Accepted Manuscript

Title: Well-formed, size-controlled ruthenium nanoparticles active and stable for acetic acid steam reforming

Author: Filippo Bossola Claudio Evangelisti Mattia Allieta Rinaldo Psaro Sandro Recchia Vladimiro Dal Santo

PII:	\$0926-3373(15)30097-7
DOI:	http://dx.doi.org/doi:10.1016/j.apcatb.2015.08.024
Reference:	APCATB 14222
To appear in:	Applied Catalysis B: Environmental
Received date:	27-5-2015
Revised date:	31-7-2015
Accepted date:	12-8-2015

Please cite this article as: Filippo Bossola, Claudio Evangelisti, Mattia Allieta, Rinaldo Psaro, Sandro Recchia, Vladimiro Dal Santo, Well-formed, size-controlled ruthenium nanoparticles active and stable for acetic acid steam reforming, Applied Catalysis B, Environmental http://dx.doi.org/10.1016/j.apcatb.2015.08.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Well-formed, size-controlled ruthenium nanoparticles
2	active and stable for acetic acid steam reforming.
3	
4	Filippo Bossola ^{a,b} , Claudio Evangelisti ^b , Mattia Allieta ^c , Rinaldo Psaro ^b ,
5	Sandro Recchia ^a , and Vladimiro Dal Santo ^{*,b} .
6	
7	^a Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como, Italy, 20133.
8	filippo.bossola@uninsubria.it; sandro.recchia@uninsubria.it
9	^b CNR- Istituto di Scienze e Tecnologie Molecolari, Via Golgi 19, Milano, Italy, 20133.
10	c.evangelisti@istm.cnr.it; r.psaro@istm.cnr.it; v.dalsanto@istm.cnr.it
11	^c Università degli studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milano, Italy
12	mattia.allieta@gmail.com
13	Corresponding author: Vladimiro Dal Santo, CNR - Istituto di Scienze e Tecnologie Molecolari,
14	Via Golgi 19, Milano, Italy, 20133; Tel: +39 02 50314428; Fax: +39 02 50314405; email:
15	v.dalsanto@istm.cnr.it
16	
17	
 18	Graphical abstract
19	
20	Highlights
21	• Ru SCMNPs are easily prepared by H_2 -reduction of metal chlorides in presence of TOA.
22	 SCMNPs derived Ru catalysts showed good performances in acetic acid steam reforming.
23	 Well-formed Ru nanoparticles limit coke deposition.
24	
25	Abstract
26	Mg(Al)O supported Ru and Rh catalysts with low loading of active metal (0.5 wt.\%) were tested in
27	the steam reforming (SR) of acetic acid (AA) to hydrogen rich mixtures. Two synthetic procedures
28	were adopted to deposit metal nanoparticles on support material: conventional impregnation from
29	metal chlorides aqueous solutions and Size-Controlled Metal Nanoparticles (SCMNPs) deposition
30	method. SCMNP derived Ru catalysts showed good performances fully comparable to standard Rh

1

Download English Version:

https://daneshyari.com/en/article/6499725

Download Persian Version:

https://daneshyari.com/article/6499725

Daneshyari.com