Accepted Manuscript

Title: FTIR and density functional study of NO interaction with reduced ceria: Identification of N_3^- and NO^{2-} as new intermediates in NO conversion

Author: Mihail Y. Mihaylov Elena Z. Ivanova Hristiyan A. Aleksandrov Petko St. Petkov Georgi N. Vayssilov Konstantin I. Hadjiivanov

PII:	S0926-3373(15)00175-7
DOI:	http://dx.doi.org/doi:10.1016/j.apcatb.2015.03.054
Reference:	APCATB 13959
To appear in:	Applied Catalysis B: Environmental
Received date:	5-2-2015
Revised date:	22-3-2015
Accepted date:	29-3-2015

Please cite this article as: Mihail Y.Mihaylov, Elena Z.Ivanova, Hristiyan A.Aleksandrov, Petko St.Petkov, Georgi N.Vayssilov, Konstantin I.Hadjiivanov, FTIR and density functional study of NO interaction with reduced ceria: Identification of N3*minus* and NO2*minus* as new intermediates in NO conversion, Applied Catalysis B, Environmental http://dx.doi.org/10.1016/j.apcatb.2015.03.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

FTIR and density functional study of NO interaction with reduced ceria: Identification of N_3^- and NO^{2-} as new intermediates in NO conversion

Mihail Y. Mihaylov,¹ Elena Z. Ivanova,¹ Hristiyan A. Aleksandrov,² Petko St. Petkov,² Georgi N. Vayssilov,^{2*} and Konstantin I. Hadjiivanov^{1*}

 ¹ Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria, e-mail: kih@svr.igic.bas.bg

² Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria,
e-mail: gnv@chem.uni-sofia.bg

Graphical abstract

Highlights

- NO produces N_3^- and NO^{2-} species when interacting with reduced ceria.
- N_3^- is inert towards NO or O_2 alone but easily interacts with a NO + O_2 mixtures.
- NO^{2-} interacts with NO forming surface hyponitrites further on decomposed to N_2O .
- The relative concentrations of N_3^- and NO^{2-} strongly depend on ceria morphology.

Download English Version:

https://daneshyari.com/en/article/6499845

Download Persian Version:

https://daneshyari.com/article/6499845

Daneshyari.com