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h i g h l i g h t s

• The parameters studied are the instantaneous speed versus time and as a function of the height of fall for small drops and extend to large drops.
• An equation relating the equivalent diameter to the terminal height of falling drop reaching 99% of the terminal velocity is proposed.
• The results obtained are comparable to the experimental data extracted from the literature.
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a b s t r a c t

The objective of this work is to propose amathematical expression for the instantaneous velocity of falling
water droplets in air and traveled height versus time. In addition, changes in terminal velocity depending
on terminal height are studied. For very small spherical drops, having very low Reynolds number and
obeying Stokes law for the drag force, the instantaneous velocity u of the drop with time is a well-known
result. From the expression of that speed, it is easy to get the drop height h versus time. By eliminating the
time, the displacement h of the droplet as a function of the velocity u is obtained. In the present work, the
latter was extended to larger drops. The values predicted by the mathematical equation obtained from the
combination of theory and experiment (semi empirical equation) are compared with well known experimental
data. The results show good agreement between the values predicted and the experimental data.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Mechanics demonstrate that the rate of fall of a body in a
continuous medium tends asymptotically towards a limit speed.
Theoretically, a drop in air takes an infinite time to reach its
terminal velocity. Practically, it is assumed that this speed is
reached when it reaches 95% of the terminal velocity. In this work,
we propose a formula describing the motion of a drop up to 99%
of its terminal velocity and compare to other authors who made
measurements at the same percentage.

Researchers generally introduce the equivalent diameter of the
drop (de), the diameter of the spherical drop having the same
volume as the deformed drop. To study the rate of fall of water
droplets in stagnant air there are three categories: (1) For very
small drops (de < 80 µm), the speed can be calculated using the
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Stokes drag formula; (2) for the average drops (80 µm < de <
500 µm), the speed can be calculated using the dynamics law
of Newton with the determined drag coefficient for solid sphere;
(3) for the large drops (500 µm < de < 5 mm) which are de-
formed due to air friction and instead of maintaining a spherical
shape, flatten, thus presenting a larger surface area to the air in
which they fall. These drops become unstable and explode when
their diameter exceeds 5 mm. Many studies in this field have been
undertaken but less successfully. The experimental data we have
analyzed concern the falling drops of water in the air: Lenard [1],
Flower [2], Laws [3], Gunn and Kinzer [4], Leeden et al. [5], Sar-
tor and Abbott [6], Wang and Pruppacher [7], Beard [8], Boxel [9],
Andsager et al. [10], Zhou et al. [11] and Chowdhury et al. [12]. Of-
ten rainy fall simulators are used for the study of the process, but
most are not high enough for large accelerated drops to reach their
terminal velocity. Most simulators have a height of 2 m and many
others have a smaller height.

In their experiments, Wang and Pruppacher [7] used a tower
that extends vertically over nine floors of a building in 1968. It
measures 35 m in height and has an area section of about 1 m2.
For very small water droplets that remain spherical having the
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Reynolds numbermuch less than 1, it is easy, after the resolution of
the equation of motion, to obtain the well known result of the fall
speed versus height (see paragraph 2) where the results are very
encouraging. By moving to larger drops, having large density ratio,
as in our case it is of the order of 1000, the study of the movement
of the droplet becomes difficult.

Recently another work on the same subject was made by
Chowdhury et al. [12]. They investigate the shape ‘‘axial ratio’’
and the falling speed of the water drops in stagnant air kept at
constant temperature to 22 °C. To carry out this project, they use a
tower highmore than 13m. Experimentswere carried out for three
different sizes of falling drops (0.26, 0.37 and 0.51 cm equivalent
diameter) for the fall distance of up to 13m. Based on experimental
observations, they divided the path traveled by the drop in three
distinct zones (Zone I, Zone II and Zone III). In Zone I, the shape of
the drop undergoes continuous adjustment due to horizontal and
vertical oscillations and the progressive viscous damping which
are the main features. Zone II is characterized by drops of constant
shape, called equilibrium form, falling without oscillations. In this
area the drops continue to accelerate to the terminal velocity
until the end of it. In zone III, the drops have already gained the
equilibrium shape and finish the trip with a speed equal to 99%
of the terminal velocity. Necessary fall distances are found to be
smaller than the distance described in the literature. Based on
experimental results, Chowdhury et al. [12] conclude that the fall
height values of approximately 6 and 12mcan be used as reference
data for rainfall experiments.

Previous theoretical and experimental works have been done
but none has a general character. Indeed, experimentally, we know
only the work of the authors cited above and from studies using
sophisticated methods such as, for example, the resolution of the
Navier–Stokes equations both in the droplet and surrounding fluid.
We cite for example the work of Gottesdiener et al. [13], in which
the numerical simulation was based on the finite volume method
and the equation of motion was solved. Each numerical method
is related to the assumptions and conditions which may vary
depending on the model. Indeed, some solutions are valid for low
Reynolds numbers, while other valid only for very small drops or
for some choice of the domain ormesh or boundary conditions. The
proposed solutions are local and cannot be generalized.

We proposed a very simple idea. We begin by studying the
movement of small water droplets that remain spherical in the
air at rest, having Reynolds number less than 1 (Section 2.1).
The experimental data used for comparison are those of Sartor
and Abbott [6]. This has already been studied by Wang and
Pruppacher [7]. The advantage here is that the drag coefficient is
known and very simple formulation, and the differential equation
obtained can be solved analytically.

Then (Section 2.2), this solution is generalized to larger drops
which deform. Expressions of drag coefficient are complicated
and the differential equation obtained for the movement is
impossible to solve analytically. A model is proposed to express
the drop height depending on the instantaneous velocity and
terminal velocity (Section 3). Indeed, it has a general character,
and in addition, the theoretical values are comparable to the
experimental data that exist in the literature. The range of validity
of this solution is discussed (Section 4).

2. Presentation of the method

The vertical movement of a spherical drop in air at rest is
described by the fundamental equation of dynamics which is
inserted, in particular, the historical term of Basset–Boussinesq
(Clift et al. [14]). In the case of particles whose density is very
high compared to that of the continuous phase, this historical
term can be neglected. This applies very well in the case of

droplets dispersed in the air where the ratio of the densities is very
important. In addition, the effects of the Basset–Boussinesq force
are even lower than the viscosity of the surrounding medium is
important (Clift et al. [14]).

Ignoring the historical term in the fundamental equation of
dynamics, the following equation is used to a falling drop in air:

(ρd + ϵρc)
du
dt

= (ρd − ρc)g − ρc
S
V
CD

u2

2
(1)

where ϵ =
1
2 for a sphere ρc V is the added mass CD the drag

coefficient and S the projection of the surface of the drop on the
plane perpendicular to the direction of movement; u, V and ρd
represent the speed, volume and density of the drop and ρc is the
density of the continuous phase. Indices c and d are respectively
for the continuous phase and the dispersed phase.

2.1. For small spherical drops (de < 160 µm)

For a spherical particle in uniform motion with the velocity
u in an infinite liquid at rest with a low Reynolds number,
Hadamard [15] and Ribczynski [16] propose the following drag
coefficient:

CD =
8 (2 + 3κ)

Re (1 + κ)
(2)

where Re is the Reynolds number of a liquid particle in an infinite
medium at rest and κ =

µd
µc

viscosity ratio. The Reynolds number
is defined by:

Re =
ρc u de

µc
. (3)

For a solid sphere or a drop of κ → ∞, Eq. (2) gives:

CD =
24
Re

. (4)

Eq. (4) is valid for Re < 0.1. The accuracy of this relationship is 1%
in the range of the Reynolds number indicated. It can be used even
for Re > 0.1 but with error of 10%.

For rising bubbles, κ → 0 and Eq. (2) leads to:

CD =
16
Re

. (5)

Considering the particle spherical and the added mass negligible
(because ϵρc product is negligible compared to ρd), using Eqs. (2)
and (3) (assuming a quasi-static nature), then Eq. (1) becomes:

du
dt

=
(ρd − ρc)

ρd
g −

6µc(2 + 3κ)

ρd d2e (1 + κ)
u. (6)

By taking K1 =
g1ρ

ρd
and K2 =

6µc (2+3κ)

ρd d2e (1+κ)
, one obtains:

du
dt

= K1 − K2 u. (7)

The resolution of Eq. (7) gives:

u = UT

1 − e−K2 t (8)

where UT =
K1
K2
. UT is the terminal velocity of Stokes. It is:

UT =
1ρ g d2e (1 + κ)

6µc (2 + 3κ)
. (9)

When κ → ∞, Eq. (9) approaches the terminal velocity of Stokes
drops and solid spheres.

UT =
1ρ g d2e
18 µc

. (10)
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