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h i g h l i g h t s

• The electrodiffusionmethodwas ap-
plied for the first time in the flow be-
tween two concentric spheres in ro-
tation.

• The evolution of the flow patterns
was illustrated by the wall velocity
gradients and their fluctuations.

• The visualization of each flow state
was quantified by the power spectra
of wall velocity gradients.
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a b s t r a c t

The instability modes that lead to turbulence between two concentric spheres, the inner one rotating
while the outer is at rest, are investigated through visualization and using the electrodiffusion (ED)
method. The wall velocity gradients are measured for the first time in a spherical shell by ED method.
The exploration of the flow regimes is carried out for a dimensionless gap width δ = (R2 − R1)/R1 of
0.107, an aspect ratio Γ = H/d over the interval (17–21) and a Taylor number in the range (22–1500).
The influence of these parameters on the apparition of instabilities is elucidated. The evolution of the flow
patterns is visualized and also quantified by the wall velocity gradients and their fluctuations. Using the
fast Fourier transform, the time series of velocity gradient obtained by the EDmethod permitted analysis
and identification of the fundamental frequencies and their evolution associated with each flow state.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The spherical Taylor–Couette flow has been an important re-
search topic for several years. Its scientific relevance lies not only
in the simplicity of the system but also in its applicability to as-
trophysical objects and geophysical motions such as atmospheres,
oceans, and planetary cores.
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The first instability of the basic flow leads to the formation
of Taylor vortices in the equatorial region, as reported by
Khlebutin [1], Sawatzki and Zierep [2], Menguturk andMunson [3],
Yavorskaya et al. [4], Wimmer [5,6], Bühler and Zierep [7,8],
Bühler [8], Schrauf, [9], Egbers and Rath [10] and Hollerbach [11].

Khlebutin [1] was the first who carried out flow visualization
experiments and torque measurements using six dimensionless
gaps (0.037 ≤ δ ≤ 1.515). He observed the Taylor vortices for
δ ≤ 0.19 but no such structures existed for δ ≥ 0.44. Egbers
and Rath [10] experimentally investigated the existence of Taylor
vortices and instabilities in spherical Couette flow. In accordance
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Nomenclature

R1 Radius of inner sphere (m)
R2 Radius of outer sphere (m)
d Gap width = (R2 − R1) (m)
f0 Fundamental frequency
H Height of liquid (m)
Γ Aspect ratio = H/d
δ Gap/radius ratio = d/R1
Ω Angular velocity (rad s−1)
v Kinematic viscosity (m2 s−1)
θi Angle measured from the sphere axis (°)
S Wall velocity gradient (s−1)
s′ Fluctuation intensity of S (s−1)
Tc1 Critical value of start-up of Taylor vortices
Tc2 Critical value of spiral mode
Tc3 Onset of spiral mode & wavy mode
Tc4 Critical value of spiral wavy mode
Tc5 Critical value of azimuthal waves
Tc6 The near-turbulence regime
Tc7 Onset of chaos
Tc8 Developed turbulence

with Khlebutin [1], they did not observe the Taylor vortices in
wider gaps (0.330 ≤ δ ≤ 0.500). Wimmer [12] showed that the
flow modes could be produced by different acceleration histories
of the inner sphere. Another study on torque measurements as a
function of flow regimes was done by Menguturk and Munson [3].
They found a good agreement between the experiment and
perturbation theory for narrow gap values.

Schmitt et al. [13] studied experimentally spherical Couette
flow in a dipolar magnetic field. They focused on the time depen-
dence of the electric potential differences between electrodes lo-
cated on the outer sphere and on the time correlations between
these differences.

On the other hand, several numerical studies were carried out.
Nakabayashi et al. [14] plotted the evolution of non-dimensional
root mean square (RMS) values of Vϕ/U0 and Vθ/U0 ratios. Vϕ

and Vθ are the fluctuations of azimuthal and meridian velocity
components, respectively and U0 is the peripheral velocity of the
rotating inner sphere. Bar-Yoseph et al. [15,16] considered both
concentric and eccentric spherical gaps for two different radii
ratios of medium size gap by means of finite-element method.
Mamun and Tuckerman [17] examined asymmetry and Hopf
bifurcation in spherical Couette flow of Newtonian fluids. They
presented bifurcation diagrams along with torque characteristics.
Yang [18] simulated fictitious symmetric boundary conditions to
find all possible flow modes. Yuan [19] discussed the wavy and
spiral Taylor–Görtler vortices in medium spherical gaps (δ = 0.14
and 0.18). Kelly et al. [20] studied linear wave modes restored by
the Coriolis force and proposed selection mechanisms to explain
the presence of the particular observed modes.

This paper aims to experimentally explore the spherical
Taylor–Couette flow. The ultimate goal is the evolution of flow
structures during the laminar–turbulent transition.Wepresent the
evolution of the velocity gradient (S) and the fluctuating rate s′/S
as a function of the Taylor number for different values of the aspect
ratioΓ . The hydrodynamic instabilities are investigated by spectral
analysis of time series recorded for different flow regimes.

2. Experimental conditions

The experimental setup consists of two concentric spheres
made of transparent Plexiglas, with the inner sphere rotating and

Fig. 1. Experimental setup. Numbers 1, 2, 3, 4 denote position of measuring
electrodes.

the outer one stationary (Fig. 1). The outer and inner spheres have
a radius of R2 = 54.9 mm and R1 = 49.6 mm, respectively.
The corresponding non-dimensional gap width δ = d/R1 is equal
to 0.107. The definitions of geometrical parameters are similar to
those used in the cylindrical Taylor–Couette systems, i.e. the gap
width d = R2 − R1 = 5.3 mm and the aspect ratio Γ = H/d
whereH is the height of liquid varying in the spherical gap. Another
important control parameter which must be taken into account is
the acceleration rate of the inner sphere. The flow patterns are also
determined by the flow history depending on the rate of Taylor
number variation.

The inner sphere is driven by a dc motor whose speed varies
between 0.01 and 3.01 rev/s. The fluid temperature is measured
by a digital thermometer andmaintained constant within±0.1 °C.
The working fluid is an aqueous solution of ferri–ferro-potassium
cyanide in an equimolar concentration of 2mol/m3 with an excess
of potassium chloride (300 kg/m3).

Four platinum probes of 0.5 mm diameter serves as cathodes,
they are flush mounted with the inner wall of the outer sphere
at angles of θ1 = 82.5°, θ2 = 84°, θ3 = 85.5° and θ4 = 88.5°
measured from the axis (Fig. 1). The anode is a platinum sheet with
dimensions of 50× 20mm fixed at the bottom of the outer sphere.

The electrodiffusion method was applied for the study of
Taylor–Couette system at the early 1970s by Cognet [21]. This
method makes use of the mass transfer in the vicinity of the
working electrode—probe. The principle of this method is to
impose a potential between cathode and anode which is different
from the equilibrium one. In this way, an electrochemical reaction
takes place and the probe active surface in contact with the
solution becomes the site of ion exchange. The motion of ions is
the result of the convection by the fluid flow, molecular diffusion
due to the concentrations gradient and migration due to the
electrical field. The migration is suppressed by addition of a
supporting electrolyte (KC1). In the quasi-steady boundary layer
approximation (Leveque [22]), the velocity gradient S at the probe
is related to the limiting diffusion current by the relation:

S = 0.0996
I3

(nFc)3D2R5
, (1)

where I is themeasured electric current,D the diffusion coefficient,
R the electrode radius, F the Faraday constant, n the number
of electrons involved in the electrochemical reaction and c the
concentration of active species in the bulk.
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