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a b s t r a c t

The equations in conservative form formodelling nonlinearwaves on a liquid film flowing down a vertical
plane have been investigated. It has been found out that the equations with boundary conditions are
invariant under parity transformation in the extended computational domain. The steady-state travelling
solutions are numerically shown to have the detected symmetry formoderate Reynolds numbers. The use
of this symmetry for the numerical solution of the problem by Galerkin methods significantly increases
the efficiency of calculations.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Film flows are widely used in heat and mass transfer
technologies. Theoretical study of the problem started in 1916with
Nusselt’s work that has become fundamental for the theory of film
condensation. The research provided the exact solution for the
waveless flow of a thin layer of viscous liquid over an inclined solid
wall. However, the inherent development of waves on free film
surfaces further intensifies heat transfer from the heated substrate.
The study of the basic characteristics and the form of these waves
in the pioneer works of Kapitza [1] laid the foundation for a new
scientific direction.

Many of the researchers (see, for example, [2,3]) use low-
dimensional Galerkin methods to derive the reduced systems of
equations for coefficients at respective basis functions, depending
on the transverse coordinate. With a lucky choice of the basis such
approaches result in rather small number of equations (two or
three). In our work we reveal a specific symmetry of governing
equations and a wide class of their solutions, including those of
interest fromexperimental point of view. The awareness about this
symmetry allows two-fold reduction of the number of equations
and gives a better idea of the success of the knownmodels, derived
earlier by extrapolation of analytical results obtained only for small
Reynolds numbers.
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The full problem formulation for waves on the isothermal
flowing film is clear and includes a system of Navier–Stokes and
continuity equations with appropriate boundary conditions on the
wall and at the free surface. This formulation implies problem
solving in a changing flow area unknown in advance, which greatly
complicates the mathematical and numerical simulation.

One of the approaches to solving themoving boundary problem
appeared in themid 80s of the last century. It comes to rewriting of
hydrodynamic equations in new variables, transforming the flow
area into the strip of constant thickness (Fig. 1):

x = x, η =
y

h(x, t)
, t = t. (1)

Here h is an instant local film thickness. The coordinate system (1)
is non-orthogonal, so the normal vector formulation of equations is
inapplicable. For this reason, many authors (see for example [4,5])
reduce the method to a simple change of variables without
transformation of vectors and tensors, contained in the original
equations.

For the case of a free falling film on a vertical plane, the
transformation (1) was performed in the hydrodynamic equations,
written in tensor form invariant under arbitrary coordinate
transformation in [6]. As a result, the following system was
obtained for the case of moderate liquid flow rates in the long
wavelength approximation, i.e. when characteristic length of
longitudinal perturbations is much larger than the film thickness:
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Fig. 1. The flow area in x–y and x–η coordinates.

∂h
∂t

+
∂(hu)
∂x

+
∂(hv)

∂η
= 0. (3)

Here σ is the surface tension, ρ is the density, ν is the kinematic
viscosity, g is the free fall acceleration, u and v are contravariant
components of velocity corresponding to the coordinates x and η,
respectively. It is clear that since x remains an original Cartesian
coordinate, the component u(x, η, t) remains the longitudinal
component of physical velocity uc in contrast to v(x, η, t), related
to the Cartesian component of the transverse velocity vc as follows:

vc = η


∂h
∂t

+ u
∂h
∂x


+ hv.

Boundary conditions on the solid wall are:
u(x, 0, t) = 0, v(x, 0, t) = 0. (4)
No-stress and kinematic conditions on the free surface are:
∂u
∂η

(x, 1, t) = 0 (5)

v(x, 1, t) = 0. (6)
There are three unknown functions in this problem, and in the

meantime, h is the function of only two variables (x, t). In the
calculated domain (x, η) there are 2 unknown functions—u(x, η, t)
and v(x, η, t), therefore, 2 equations are necessary to find them.
In the long-wave model these two equations are: the continuity
equation and themomentum balance in the longitudinal direction.
A kinematic condition on the free surface (η = 1) allows finding
the function h(x, t). In contrast to the regular presentation of the
kinematic condition on a free boundary in Cartesian coordinates,
where it is represented as a differential equation:

vc(x, h, t) =
∂h
∂t

+ uc(x, h, t)
∂h
∂x

,

it takes the form (6) in curvilinear coordinates (1).

2. Symmetry

Let new transverse coordinate be:
η′

= η − 1,
then the flow area lies in the interval η′

∈ [−1, 0]. Note that η′ is
expressed in the original Cartesian coordinates as follows:

η′
=

y
h(x, t)

− 1.

It is easy to see that Eqs. (2)–(3) are invariant under the
transformation:
η′

→ −η′ (7)

u(x, η′, t) → u(x, −η′, t) (8)

v(x, η′, t) → −v(x, −η′, t). (9)

It means in particular that there are two types of solutions of
these equations in the extended strip η′

∈ [−1, 1]. Solutions of
the first type are characterized by symmetry:

u(x, η′, t) = u(x, −η′, t) (10)

v(x, η′, t) = −v(x, −η′, t). (11)

It is clear that the solutions of the first type satisfying the no-slip
and no-penetration boundary conditions on both boundaries:

u(x, −1, t) = v(x, −1, t) = 0 (12)
u(x, 1, t) = v(x, 1, t) = 0 (13)

are the solutions to original problem (2)–(6) in a half-strip [−1, 0].
Indeed on the boundary η′

= −1, the conditions (4) are satisfied,
and the boundary condition of no-penetration at η′

= 0 (kinematic
condition v(x, 0, t) = 0) is met automatically, due to fact that
the contravariant transverse component of the velocity v for the
first type solutions is an odd function with respect to η′. And since
the function u is even, the dynamic condition on this boundary is
automatically fulfilled as well:

∂u
∂η′

(x, 0, t) = 0.

Solutions of the second type do not have such symmetry, but
in virtue of (7)–(9), if a solution u1(x, η′, t) and v1(x, η′, t) exists,
then there is a solution:

u2(x, η′, t) = u1(x, −η′, t)
v2(x, η′, t) = −v1(x, −η′, t).

At that

u1(x, η′, t) ≠ u1(x, −η′, t)
v1(x, η′, t) ≠ −v1(x, −η′, t).

However, if the second type solutions for the problem (2)–(6)
are extended into the interval η′

∈ [0, 1] then, the boundary
conditions (13) at η′

= 1 are not necessarily fulfilled.
Considering higher orders of smallness makes the problem as

a whole and boundary conditions on free surface (5) in particular
much more complicated. This will most probably lead to breaking
of symmetry (7)–(9). Anyway, the mentioned symmetry will be
destroyed even at the used approximation if other conditions at
free boundary, e.g. accounting for gas influence on film flowing, are
considered. Nevertheless, the found symmetries for the boundary
layer model are quite interesting per se. In particular, the above
property of the symmetry is useful for finding solutions to the
problem (2)–(6).

3. Calculations

For numerical solution the problem (2)–(6) was written in a
dimensionless form:
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Q (x, −1, t) = V (x, −1, t) = 0 (16)
∂Q
∂η′

(x, 0, t) = 0, V (x, 0, t) = 0. (17)

Here, we introduce new functions Q = uh, V = vh relative to
which Eq. (3) is linear, Re = u0h0/ν is the Reynolds number, Fi =
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