
European Journal of Mechanics B/Fluids 59 (2016) 57–69

Contents lists available at ScienceDirect

European Journal of Mechanics B/Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Motion of a viscous droplet bisecting a free surface of a semi-infinite
micropolar fluid
E.I. Saad
Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

a r t i c l e i n f o

Article history:
Received 7 October 2015
Accepted 26 April 2016
Available online 11 May 2016

Keywords:
Free surface
Spin condition
Axisymmetric/asymmetric micropolar fluid

a b s t r a c t

The Stokesian flow of a spherical-shaped droplet which is halfway immersed in a semi-infinite phase of a
micropolar fluid is discussed, the surface of which is assumed to remain flat. This configuration is studied
analytically using the stream function formulation in two different settings, when the movement of the
droplet perpendicular to the free flat surface of themicropolar fluid and the parallel motion. The interface
conditions on the droplet boundary are that the velocity is continuous, the shear stress is continuous, and
themicrorotation is proportional to the vorticity. Analytical solutions for the stream functions outside and
inside the droplet are obtained in each case of the droplet movement. The drag force acting, in each case,
on the part of fluid sphere immersed in the micropolar fluid is evaluated. Numerical results for the drag
force coefficient versus the relative viscosity, micropolarity parameter and spin parameter are presented
both in tabular and graphical forms. The results for the drag coefficient are compared with the available
solutions in the literature for the limiting cases.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Eringen [1] formulated the theory of micropolar fluids which
display the effects of local rotary inertia and couple stresses.
This theory can be used to explain the flow of colloidal fluids,
liquid crystals, animal blood, polymer fluids, fluid suspension, etc.
Physically, micropolar fluids may be described as non-Newtonian
fluids consisting of dumb-bell molecules or short rigid cylindrical
elements. The presence of dust or smoke, particularly in a gas,
may also be modeled using micropolar fluid dynamics. This
theory is capable of describing such fluids. In micropolar fluids,
individual particles can rotate independently from the rotation
and movement of the fluid as whole. Therefore, a new variable
which represents the angular velocity of fluid particles and a
new equation governing this variable should be added to the
conventional model. Extensive review of micropolar fluid theory
and some of its applications can be found in recent books [2,3] and
references therein.

The motion of fluid droplets over fluid and solid surfaces has
attracted the interest of many investigators in the past because
of its numerous practical and industrial applications. It is well-
known that the application of a body force or external gradients
can be used as a mechanism for driving the motion of fluid drops,
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and the ability to control these properties can play a key role
in many industrial processes such as coating and microfluidic
devices [4–7]. The pioneer Stokes’ flow problem of the steady-
state translational motion of a spherical drop in an immiscible
fluid was treated by Hadamard [8] and Rybczynski [9]. Hetsroni
and Haber [10] used the method of reflection to solve the problem
of a single droplet submerged in an unbounded viscous fluid of
different viscosity. O’Neill et al. [11] have studied the motion of a
solid spherical particle relative to a planar interface separating two
immiscible incompressible fluids of widely disparate viscosities,
while allowing for homogeneous Navier slip condition over the
entire submerged sphere surface. Recently, Lee and Keh [12,
13] investigated the slow translational and rotational motions
of a spherical particle and fluid drop within a non-concentric
spherical cavity that had slip surfaces, perpendicular to the line
of their centers. Ramkissoon [14,15] has obtained the solution
for Stokes’ flow problem of a micropolar fluid flow around a
Newtonian fluid sphere and spheroid. Niefer and Kaloni [16]
discussed the two related problems of the flow of a viscous
fluid past a fluid sphere which has a micropolar fluid inside
it and the flow of a micropolar fluid past a viscous fluid drop
with non-zero spin boundary condition. Hayakawa [17] solved
the problems of axisymmetric slow viscous flow of a micropolar
fluid past a stationary sphere and a stationary cylinder explicitly,
and computed the drag force in each case. The resistance force
exerted on a solid sphere moving with constant velocity in a
micropolar fluid with a nonhomogeneous boundary condition for
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the microrotation vector was calculated by Hoffmann et al. [18].
Stokes flow motions of a sphere bisected by a free flat surface
bounding a semi-infinite micropolar fluid have extensively been
examined by Saad [19]. The problem of Stokes axisymmetrical
flow of an incompressible micropolar fluid past a fluid droplet-
in-cell models has been investigated analytically by [20], and the
Stokes axisymmetrical flow caused by a viscous spherical droplet
translating in a micropolar fluid perpendicular to a plane wall at
an arbitrary position from the wall is presented in [21] as well as
for the related problem of a micropolar fluid sphere immersed in a
viscous fluid.

It should be noted here that there is no uniform consensus
on the microrotation boundary conditions for micropolar fluids.
An interesting review for various types of microrotation boundary
conditions is given by Migun [22]. An important physically
acceptable dynamic boundary condition for microrotation was
suggested by Aero et al. [23] which states that the microrotation
is proportional to the couple stress at the boundary. Also a
spin–vorticity kinematic boundary condition was proposed by
Condiff and Dahler [24] which states that the microrotation is
proportional to the vorticity at the boundary.

The basic physical problem presented in this study relates to
the hydrodynamic mechanisms permitting a droplet molecule to
cross an interfacial region during an interphase mass transfer
from one bulk-fluid solvent phase to another under the influence
of a chemical potential difference [11]. This motivated us to
study Stokes flow arising from the axisymmetric and asymmetric
translational motions of a viscous fluid sphere bisected by a
free surface bounding a semi-infinite micropolar fluid, which
is assumed to be flat. Surface tension acting at the interface
between the two immiscible fluids tends to keep the spherical
shape of the fluid particle against the shearing stresses which
tend to deform it. If the motion is sufficiently slow or the droplet
sufficiently small size, the droplet will be spherical, at least in
the first approximation [25]. Taylor and Acrivos [26] treated the
problem of distortion which occurs when the inertial effects are
no longer negligible for a viscous drop in a second immiscible
unbounded viscous fluid. The floating fluid droplets can be used
as containers for encapsulating reagents in biochemical reactions.
They allow low consumption of the reagents and give direct access
to reaction products [27]. Taking advantage of the noncoalescence
phenomenon of a droplet on a liquid substrate, the researchers
focused on manipulating droplets on the liquid free surface both
experimentally and theoretically [28–31]. Shabani et al. [31]
developed a data represented by non-dimensional groups of
parameters could be used as a guideline to design experiments
to form various sizes of floating droplets for the effective droplet
manipulation. Greco and Grigoriev[32] investigated the problem
of a droplet suspended at the interface between a substrate fluid
and a covering fluid. They declared, under certain assumptions,
the surface tensions at the upper surface of the droplet and at
the substrate control the degree of submersion and the shape
of the droplet. They also showed that, if the surface tension at
the substrate vanishes then the droplet has a spherical shape.
Therefore in this model, we assume that the deformation of the
fluid particle is neglected and the particle keeps its spherical
shape permanently. We confine our attention to the special case
where the sphere is bisected by the plane of the interface, and
to situations for which the contact angle is 90°. As boundary
conditions, continuity of velocity, continuity of shear stress and the
spin–vorticity relation at the droplet surface are used. Analytical
solutions are obtained in each case for the stream functions and
microrotation components. The drag acting (for axisymmetric and
asymmetric cases) on the fluid droplet is evaluated. Numerical
results for the drag force coefficient versus the relative viscosity,
micropolarity parameter and spin parameter are presented both
in tabular and graphical forms. The results for the drag coefficient
are compared with the available solutions in the literature for the
limiting cases.

2. Field equations

The equations governing the steady flow of an incompressible
micropolar fluid under Stokesian assumption in the absence of
body force and body couples are given by [3]

div q⃗ = 0, (2.1)

grad p + (µ+ k) curl curl q⃗ − k curl ν⃗ = 0, (2.2)

k curl q⃗ − 2k ν⃗ − γ curl curl ν⃗ + (α + β + γ ) grad div ν⃗ = 0, (2.3)

where q⃗, ν⃗ and p are the velocity vector, microrotation vector and
the fluid pressure at any point, respectively. µ is the viscosity
coefficient of the classical viscous fluid and k is the vortex viscosity
coefficient. The remaining constants α, β and γ are gyroviscosity
coefficients.

The equations for the stress tensor tij and the couple stress
tensormij are given by the following constitutive relations

tij = −p δij + µ (qi,j + qj,i)+ k (qj,i − ϵijl νl), (2.4)
mij = α νl,l δij + β νi,j + γ νj,i, (2.5)

where the comma denotes partial differentiation with respect to
the spatial coordinates, δij and ϵijl are the Kronecker delta and the
alternating tensor, respectively.

3. Formulation of the problem

Stokes’ flow motion of a viscous spherical droplet relative to a
planar interface separating two nonmixing fluids is investigated as
shown in Fig. 1. In general the fluids are assumed to be micropolar
of widely different viscosities. Our aim in this work is to illustrate
in a relatively simplemanner how the drop assumption helps us to
remove the contact-line singularity. These simplifications allow us
not to consider an arbitrary degree of submersion of the droplet.
We limit our investigation to the case where the viscosity ratios
characterizing two fluids phases are large. In this case the planar
surface may be considered as effectively stress and couple stresses
free, and only the hydrodynamic forces exerted on that half of
the spherical droplet immersed in the more viscous fluid need be
considered in the calculations.

Consider a translating viscous fluid sphere S, of radius a and
viscosity µ̃, at the instant of time that it is exactly half-immersed
in a planar free surface F bounding a semi-infinite micropolar fluid
region D. The free surface is assumed to have no motion normal
to itself. Instantaneously, we shall assume that the quasisteady
motion (both axisymmetric and non-axisymmetric motions) of a
spherical droplet translatingwith a constant velocity U⃗ in a second,
immiscible micropolar fluid of viscosities (µ, k, α, β, γ ). The
velocity vector may be arbitrarily oriented relative to the normal
to the free flat surface F. Let (x, y, z), (ρ, φ, z) and (r, θ, φ) denote
the system of rectangular Cartesian axes, circular cylindrical and
spherical coordinate systems, respectively, centered at O. The z-
axis lies normal to the free surface and points into the region of
the micropolar fluid (see Fig. 1).

We define the following three regions in terms of this spherical
coordinate as follows:

(i) The semi-infinite micropolar fluid region D bounded by the
free flat surface

r > a, 0 ≤ θ <
π

2
, 0 ≤ φ < 2π. (3.1)

(ii) The immersed fluid half-sphere S of the sphere surface

r = a, 0 ≤ θ <
π

2
, 0 ≤ φ < 2π. (3.2)
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