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a b s t r a c t

In this work, the influence of temperature dependence of viscosity on the weakly nonlinear regimes
in a horizontal fluid layer with poorly conducting boundaries is studied. A multi-scale method is used
to derive the amplitude equations, which are investigated analytically and numerically. The stability
of roll patterns, square cells, hexagonal cells and quasi-periodic dodecagonal structures is investigated
analytically. As a numerical methodwe use one of modifications of the spectral method. It has been found
that only hexagonal and square patterns maintain stability, the hexagonal pattern being always stable for
sufficiently large values of the Prandtl number. The calculations have shown that there is the region of
co-existence of hexagonal and square patterns for a small range of the parameter, which is responsible
for temperature dependence of viscosity. The hexagonal cells are always excited subcritically, whereas
the square cells can be excited both in a subcritical and supercritical manner. Our investigations at small
values of the Prandtl number have also revealed the instability, which is associated with nonzero vertical
vorticity.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the literature, there have been a sufficiently large number
of papers, which investigate the influence of temperature depen-
dence of viscosity on flows of different fluids and convection. These
problems are of great interest in lubrication, tribology, food pro-
cessing, instrumentation, viscometry and in the field of the study
of convection in the Earth’s atmosphere, the Earth’s hydrosphere
and the Earth’s mantle (and in mantles and atmospheres of some
other planets).

The convection in layers with poorly conducting boundaries
has also been studied extensively. In particular this problem is of
interest due to the study of convection in the Earth’s mantle.

At first we consider the papers investigating the stability of
non-convectional flows. The stability of Couette flow has been
studied in the articles [1–7]. The stability of channel and pipe
flows is considered in the papers [8–17]. The effect of viscous
heating is included in some of these studies. A mixed Rayleigh–
Benard–Poiseuille convection has been studied in [18].
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Now we consider the papers investigating the influence of
temperature-dependent viscosity on convection. Extensive stud-
ies have been undertaken to investigate the influence of tem-
perature dependence of viscosity on convection in a horizontal
fluid layer, the boundaries of which have perfect thermal con-
ductivity. The first experimental study on this problem has been
made by Graham [19]. He studied convection in air. After this
problem was experimentally investigated by Tippelskirch [20,21].
In the first paper he studied convection in liquid sulfur. In the
second paper he studied convection in aerosols. These authors
observed convection in the form of hexagonal cells. The first
theoretical studies on weak temperature dependence of viscos-
ity have been made by Palm [22], Segel and Stuart [23], Palm and
Oiann[24] and Busse [25]. They have found out that convection in
this case appears in the form of hexagonal cells. Busse [25] has also
shown that when the Rayleigh number is slightly higher than the
critical value, a hexagonal pattern is replaced by rolls.

The problem of convection in a horizontal layer with fixed
thermal flux on the rigid boundaries was first investigated by
Nepomnyashchy [26]. He derived the amplitude equation, found
analytically the stationary solution and analytically investigated
the stability of this solution. The problem of convection in a
horizontal layer with poorly conducting boundaries was first in-
vestigated by Busse and Riahi [27]. They used the method of
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expansion in a small parameter. Somewhat later, Chapman and
Proctor [28] independently from Nepomnyashchy explored the
case of fixed thermal flux on boundaries. The cases of rigid, stress-
free andmixed boundaries were considered. They derived the am-
plitude equations, found analytically the stationary solutions and
investigated these equations numerically. As an extension of their
study, Proctor [29] using the same approach derived the ampli-
tude equations for the problem of Busse and Riahi [27]. To ex-
plore these equations he used a variational method. Jenkins [30]
investigated the case of finite boundary conductivity. Jenkins [31]
considered the temperature dependence of viscosity for the case
of finite boundary conductivity, and briefly reviewed the case
of poorly conducting boundaries. For poorly conducting bound-
aries he wrote the amplitude equations, the coefficients of which
after second nondimensionalization are comparable with the
coefficients of the amplitude equations with the finite but small
conductivity. However, he restricted himself to the case of square
cells and roll pattern. It should also be noted that like many other
authors he confined his investigation to the case of the infinite
Prandtl number. In someof the abovementioned articles it is stated
that their weakly nonlinear results can be extended to the finite
Prandtl case. However, this statement is true only in part.When the
problem is solved for small temperature perturbations this state-
ment turns to be reasonable at least for rigid boundaries. But if the
temperature perturbations are finite (with the Rayleigh number
deviation remaining small as before, and the wave length being
large), this is not the case. This fact was first mentioned by Pis-
men [32]. The same inference follows from the paper by Lyubimov
and Cherepanov [33], who investigated the case of inhomogeneous
heating in the layer with fixed thermal flux at the boundaries. In
this case, we get an additional equation, which describes the ver-
tical vorticity.

In this study, we considered Jenkin’s problem but in the case
of the finite Prandtl number. The results of this study are also of
interest for the infinite Prandtl number since Jenkin’s investigation
ignores structures that are more complicated than the square cells
and roll patterns.

2. Formulation of the problem

We consider a horizontal fluid layer of depth d located between
two rigid plates of depth λd. The fluid has density ρ, thermal
conductivity κ , specific heat capacity cp. The plates have density ρ̃,
thermal conductivity κ̃ and specific heat capacity c̃p. It is assumed
that the thermal conductivity of slabs κ̃ is much less than the
thermal conductivity of fluid κ . Also it is assumed that the fluid
density ρ and dynamic viscosity of the fluid linearly depend on the
temperature:

ρ = ρ∗(1 − β(T − T∗)), (1)

η = η∗(1 − ψ(T − T∗)), (2)

where T∗ is the temperature in the center of the layer in the absence
of convection. Usually people consider more complex temperature
dependence of viscosity (for example, exponential). Butwe suggest
weak dependence of viscosity on temperature (the coefficientψ is
small). In this casewe can expand any function into Taylor series on
(T − T∗). The first term of expansion will be linear (in some special
cases this term can be zero, but we does not consider such cases).

The plates are assumed to obey the Fourier law:

ρ̃ c̃p
∂ T̃
∂t

= κ̃∇2T̃ . (3)

In the fluid layer the Boussinesq approximation is used:

∂v
∂t

+ v·∇v = −
1
ρ∗

∇p +
1
ρ∗

∇ · S + gβ(T − T∗)ez, (4)

∇ · v = 0, (5)

ρcp


∂T
∂t

+ v · ∇T


= κ∇2T , (6)

where S is the viscous stress tensor, which is defined by

Sij = η


∂vi

∂xj
+
∂vj

∂xi


. (7)

In this case the following boundary conditions are satisfied:

z = −d(1 + λ) : T = T2, (8)
z = d(1 + λ) : T = T1, (9)

z = ±d : T = T̃ , κ
∂T
∂z

= κ̃
∂ T̃
∂z
. (10)

The system of equations and boundary conditions admits the
solution that corresponds to the mechanical equilibrium of the
fluid:

v0 = 0, (11)
T0 = T∗ − qz, (12)

z ≥ d : T̃0 = T∗ − qd(ζ − 1)/ζ − qz/ζ , (13)

z ≤ −d : T̃0 = T∗ + qd(ζ − 1)/ζ − qz/ζ , (14)

where ζ = κ̃/κ , and q = (T2 − T1)ζ/(2d(λ + ζ )) is the
vertical thermal flux through the fluid in the absence of the fluid
motion. This solution is also called the basic state. In this study, we
considered the case of small ζ , which means that the quantity q
can be expanded into series in ζ :

q = q0(1 − ζ/λ+ · · ·), (15)

where the following notation is used:

q0 ≡ (T2 − T1)ζ/(2dλ). (16)

Here q0 is themain part of the temperature gradient in the fluid,
which is considered to be finite. This implies that T2 − T1 is large
and has the order of magnitude of the quantity 1/ζ .

After introducing the perturbations of the basic state, we adopt
for pressure renormalization the following scales: d is the length
scale, d2ρ∗cp/κ is the time scale, κ/(ρ∗cpd) is the velocity scale,
q0d is the temperature scale (both for the fluid layer and the plates),
η∗κ/(d2ρ∗cp) is the scale of pressure and viscous stress tensor. As a
result, Eqs. (3)–(6) and boundary conditions (8)–(10) take the form
(we use the same notations for dimensional and nondimensional
forms):

α
∂ϑ̃

∂t
= ζ∇2ϑ̃, (17)

1
Pr


∂v
∂t

+ (v · ∇)v


= −∇p + ∇ · S + Raϑez, (18)

∇ · v = 0, (19)
∂ϑ

∂t
+ v · ∇ϑ = ∇

2ϑ +
q
q0
vz, (20)

z = ±(1 + λ) : ϑ̃ = 0, (21)

z = ±1 : ϑ = ϑ̃,
∂ϑ

∂z
= ζ

∂ϑ̃

∂z
, (22)
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