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a b s t r a c t

In this Note we give a simple volume formulation of capillary force. This formulation is not conservative
but less singular than that of Lafaurie et al., (1994). Moreover our formulation allows to recover
immediately Laplace’s law.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the most challenging issue in Computational Fluid
Dynamics (CFD) is to capture accurately and robustly multi-
fluid flows. Indeed, after spectacular progresses in computational
(single) fluid dynamics, both industrial and fundamental issues are
demanding for the same state of the art in the case of two (ormore)
fluid flows. There aremainly two kinds ofmathematicalmodels for
two nonmiscible fluid flows. The first one states that the two fluids
under consideration are separated by sharp interfaces and the
numerical method should capture this interface (or free surface).
This is termed as separated flows. The second one acknowledges
the fact that interfaces could be too complicated (e.g. a bubbly
flow) to be computed and introduces averaged equations (Ishii
and Hibiki [1]) so that the interfaces are not captured but locally
the volume fraction of each fluid is a dependent variable to be
computed like the other ones (density, velocities, pressure, . . . ).
These two kinds of models are complementary and sometimes the
first one is used to validate the second one according to the usual
DNS1 approach.

In this Note we focus on separated flows. At the interface
between twononmiscible fluids like air andwater or oil andwater,
to cite a few, a capillary force occurs and enters into themomentum
balance:
∂(ρ u)
∂t

+ div(ρ u ⊗ u)+ ∇p = ρ g + 2 σ κ δΣ n. (1)
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1 Direct Numerical Simulation.

In this equation, the capillary force is 2 σ κ δΣ n where σ denotes
the surface tension coefficient between the two fluids, κ denotes
the mean curvature of the interfaceΣ , n the unit normal onΣ and
δΣ is the Dirac mass supported by the interface. Observe that in
the r.h.s. of (1) the factor 2 appears since in this paper we use the
definition of the mean curvature of the interface steaming from
differential geometry. In Fluid Mechanics this factor is not present
and κ then denotes the sum of the two principal curvatures.

Remark 1. We deal, in this Note, with capillary forces in the
simplest context in CFD, namely the Euler equations for perfect
fluids. The case of viscous and diffusive fluids (Navier–Stokes
equations) is totally parallel.

On the one hand, modern numerical methods in fluid dynamics
rely on Finite VolumeMethods (FVM) as they allow both to handle
real geometries and to ensure exactly local conservations likemass,
momentum and energy. On the other hand, the capillary force is
highly singular. Indeed surface forces are not adapted to FVM2 on
a fixed mesh (Eulerian methods). In this Note we prove that this
force can be expressed in terms of volume forces:

2σ κ δΣ n = ∇(2σ κ HΣ )− HΣ∇(2σ κ), (2)

where HΣ denotes the Heaviside function.

2 Except for the method proposed by D. Chauveheid [2].
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Fig. 1. The interface at time t between the two fluids.

Remark 2. In [3], Lafaurie et al. show that:

κ δΣ n = div ((I − n ⊗ n) δΣ ) , (3)

which leads also to a volume formulation of the capillary forces. In
a certain sense it is more elegant than (2) since it is a conservative
expression but, as explained in Section 4.2, it does not allow to
recover Laplace’s law.

2. Expression of the capillary force

2.1. Geometry

Weconsider twononmiscible fluids (liquids or gases) separated
at time t by a smooth interface denoted by:

Σ(t) ≡ {x ∈ Rd such that ϕ(t, x) = 0}, (4)

where ϕ(t, x) = 0 is the equation of this hypersurface in R × Rd

(d = 2 or 3). We assume that this equation satisfies:

|∇xϕ| ≠ 0 onΣ(t), (5)

and that ϕ < 0 corresponds to fluid 1 while ϕ > 0 corresponds to
fluid 2, see Fig. 1. Finally we denote by

n =
∇xϕ

|∇xϕ|
, (6)

the unitary normal on the free surface at time t pointing from fluid
1 towards fluid 2.

2.2. Proof of formula (2) in the 2D case

According to (5) one can build onΣ a curvilinear abscissa s and
the Dirac mass supported by Σ is the distribution on the plane
defined by:

⟨δΣ ,Ψ ⟩ ≡


Σ

Ψ (s) ds, ∀Ψ , (7)

where Ψ is a smooth function on R2 whose compact support is a
neighborhood ofΣ .

Again thanks to (5), locally on Σ , after rotation on the (x, y)
coordinates if necessary, it is possible to assume that:

ϕ(t, x, y) = y − Φ(x, t), (8)

so that (7) implies:

δΣ (x, y) =


1 + Φ2

x (x, t) δ(y − Φ(x, t)), (9)

where this time δ denotes the classical Dirac mass on R:

⟨δ, ψ⟩ ≡ ψ(0), ∀ψ smooth and compactly supported on R.
(10)

On the other hand we have:

κ =
Φxx

(1 + Φ2
x )

3/2
and n =

1
1 + Φ2

x (x, t)
(−Φx, 1). (11)

Hence in this case the second term in the r.h.s. of (1) is:

2 σ κ δΣ n = 2 σ
Φxx

(1 + Φ2
x )

3/2
δ(y − Φ(x, t))(−Φx, 1). (12)

Introducing the usual Heaviside function H on R and observing
that:

∂

∂x
H(y − Φ(x, t)) = −Φx δ(y − Φ(x, t)), (13)

and

∂

∂y
H(y − Φ(x, t)) = δ(y − Φ(x, t)), (14)

we deduce that:

2 σ κ δΣ n = ∇x,yH(x, y, t)+ S(x, y, t), (15)

where:

H(x, y, t) ≡ 2 σ
Φxx(x, t)

(1 + Φ2
x (x, t))3/2

H(y − Φ(x, t)), (16)

S(x, y, t) ≡


−2 σ


Φxx(x, t)

(1 + Φ2
x (x, t))3/2


x
, 0


H(y − Φ(x, t)).

(17)

Returning to the intrinsic formulation, we can write:

2 σ κ δΣ n = ∇x,y(2 σ κ HΣ ) − HΣ ∇x,y(2 σ κ), (18)

where HΣ is the distribution on the plane defined by:

⟨HΣ ,Ψ ⟩ ≡


V2(t)

Ψ (x, y) dx dy, ∀Ψ , (19)

whereΨ is a smooth function on R2 with compact support. That is
HΣ is the characteristic function of the volume occupied by Fluid 2
(ϕ(x, y, t) > 0). We have shown (2) in the 2D case.

2.3. Proof of formula (2) in the 3D case

The proof is totally similar to the previous one. Here thanks to
(5), one can build onΣ a normal parametrization s1 and s2 and the
Diracmass supported byΣ is the distribution on the space defined
by:

⟨δΣ ,Ψ ⟩ ≡


Σ

Ψ (s1, s2) ds1 ds2, ∀Ψ , (20)

where Ψ is a smooth function on R3 whose compact support is a
neighborhood ofΣ .

Again thanks to (5), locally on Σ , after rotation on the (x, y, z)
coordinates if necessary, it is possible to assume that:

ϕ(t, x, y, z) = z − Φ(x, y, t), (21)

so that

δΣ (x, y) =


1 + Φ2

x + Φ2
y δ(z − Φ(x, y, t)). (22)

On the other hand we have:

κ =
(1 + Φ2

x )Φyy + (1 + Φ2
y )Φxx − 2ΦxΦyΦxy

(1 + Φ2
x + Φ2

y )
3/2

, (23)
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