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a b s t r a c t

The steady creepingmotion of an incompressiblemicropolar fluid between two slightly corrugated plates
is investigated using the perturbation technique up to the second order. Both normal and parallel flows
to the corrugations are considered. The corrugations of the twowalls are assumed to be either in phase or
half-period out of phase. It is also, assumed that the corrugations are periodic sinusoidal waves of small
amplitude. The assumption of low Reynolds number is applied so that the nonlinear inertial terms can
be ignored. The effect of corrugations, the rate of flow and the mean velocity are illustrated versus the
micropolarity, phase difference and wavelength of corrugations.
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1. Introduction

The theory of micropolar fluids was proposed by Eringen to
describe the correct behavior of a type of fluids with substructures.
The motion of these fluids can be investigated by two vectors;
the classical velocity vector characterizing the motion of macro-
volume element and themicrorotation vector which represent the
rotation ofmicroelements about their centroids [1]. This theory can
be applied in an increasingly significant number of cases in various
scientific fields. Some of these fields are the study of lubricating
fluids in bearings in lubrication theory [2] and the physics of
liquid crystals [3]. Ferrofluid can be modeled as a micropolar fluid;
because it consists of a stabilized colloidal suspension of Brownian
magnetic particles in a non-magnetic liquid host [4]. The granular
flows have micro-structure and rotation of particles. So, the model
of micropolar fluids can describe granular fluid flows correctly
[5–8]. Hayakawa [5] has reported that the theoretical calculations
of certain boundary value problems are in agreementwith relevant
experimental results of granular flows. The theory of micropolar
fluids has attracted the attention of many authors e.g. [9–13].

The fluid flows through channels with corrugated or irregular
boundaries have received considerable attention from researchers
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because of their wide range applications. Physically, studying
fluid flow through channels with irregular surfaces has various
applications in the fields of distillation columns and separation
processes [14,15], biological transport phenomena and chemical
separation [16,17] and determining pressure drop in microchan-
nels with rough surfaces [18–25]. The effect of boundary irreg-
ularities can be characterized experimentally using, for example,
optical measurement, scanning electron microscope, atomic force
microscope and scanning tunnelingmicroscope [26,16]. One of the
important applications of irregular boundaries is the blood flow in
the circularity system which usually encounters boundary irregu-
larities in diseased vessels [17,27]. This results in the existence of
abnormal flow conditions. An excellent description of such abnor-
malities is given by Chow and Soda [28]. Sanyal and Sarkar [29]
investigated a steady wavy incompressible Newtonian fluid flow
in a channel with irregular surfaces and used a haemodynamical
solution to determine the effects of the wall roughness upon the
blood oxygenation in a membrane oxygenator. Recently, the flow
through corrugated channels has been studied by a number of re-
searchers e.g. [30–35].

In the present work, we extend the work ofWang [33,34] to the
theory ofmicropolar fluids. A perturbation technique is used to the
second order for slightly corrugatedwalls [36]. Both transverse and
longitudinal fluid flows are considered. The no-slip and no-spin
boundary conditions are applied. The assumption of low Reynolds
number is utilized so that the nonlinear inertial terms can be
ignored.
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2. Field equations

The field equations governing an incompressible steady mi-
cropolar fluid flow in the absence of body forces and body couples
are given by

div q⃗∗
= 0, (2.1)

−(µ+ κ) curl curl q⃗∗
+ κ curl ν⃗∗

− grad p∗
= 0, (2.2)

(α + β + γ ) grad div ν⃗∗
− γ curl curl ν⃗∗

+ κ curl q⃗∗
− 2κ ν⃗∗

= 0, (2.3)

where q⃗∗, ν⃗∗ and p∗ are the velocity vector, microrotation
vector and fluid pressure at any point. The material constants
(µ, κ) are viscosity coefficients and (α, β, γ ) are gyro-viscosity
coefficients. These material constants are satisfying the following
inequalities [1]

κ ≥ 0, 2µ+ κ ≥ 0, γ ≥ 0,
γ ≥ |β| , 3α + β + γ ≥ 0.

(2.4)

The constitutive equations for the stresses τ ∗

ij and couple stresses
m∗

ij have the forms

τ ∗

ij = −p∗ δij + µ

q∗

j,i + q∗

i,j


+ κ


q∗

j,i − εijkν
∗

k


, (2.5)

m∗

ij = α ν∗

r,r δij + β ν∗

i,j + γ ν∗

j,i, (2.6)

where the commadenotes partial differentiation, δij and εijk are the
Kronecker delta and the alternating tensor, respectively.
We now introduce the following non-dimensional variables

−⇀q =
µ

GL2
−⇀q

∗

, −⇀ν =
µ

GL
−⇀ν

∗

, y =
y∗

L
,

x =
x∗

L
, p =

1
GL

p∗,

(2.7)

where the mean x-pressure gradient is scaled by G = µQ/2L3 and
the flow rate is denoted by Q .
In view of the above non-dimensional variables, the governing
equations (2.1)–(2.3) reduce to

div q⃗ = 0, (2.8)

−(µ+ κ) curl curl q⃗ + κ curl ν⃗ − µ grad p = 0, (2.9)
(α + β + γ ) grad div ν⃗ − γ curl curl ν⃗

+ κL2 curl q⃗ − 2κL2 ν⃗ = 0. (2.10)

3. Micropolar cross flow

Here, we consider the flow of a micropolar fluid between two
fixed corrugated walls at a distance 2L apart. The corrugation
has the form of a sinusoidal wave of amplitude ε L and wave
number λ/L, where ε (≪ 1) is the perturbation parameter and
λ is the wavelength of proposed corrugations. Thus only slight
corrugations are considered.

It is convenient to work with Cartesian coordinates (x, y, z)
with y = 0 on the mid-plane between the two fixed corrugated
walls. The two coordinates x and z are taken through the walls in a
direction normal and parallel to the corrugations, respectively, as
shown in Fig. 1. Due to the fact that themaximum or theminimum
flow occurs at the phase difference 0° or 180° [33,34], we have to
consider only the cases where the upper and lower corrugations
are either in phase or half-period out of phase. The upper wall is
assumed to bedescribed by the equation, in non-dimensional form,

y = 1 + ε sin λx. (3.1)

Fig. 1. Normalized section view of cross flow of a micropolar fluid through a
corrugated plates.

And the lower wall is characterized by one of the following
equations

y(±) = −1 ± ε sin λx, (3.2)

where the plus (minus) sign corresponds to phase difference of
0°(180°) between the two walls. The normalized wave number is
assumed to be of order unity. However, the following analysis is
valid also for high wave number as far as ε2λ ≪ 1.
Suppose that the mean flow is normal to the corrugations. Then,
the cross flow field is two-dimensional, and has periodic as
well as non-periodic components. Therefore, the velocity and
microrotation components have the forms

q⃗ = (u (x, y) , v (x, y) , 0) , ν⃗ = (0, 0, ϕ (x, y)) . (3.3)

Thus, the volume flux, Q , is given by the expression
 1+ε sin λx
−1±ε sin λx u dy

for all x.
Assuming that the motion is slow, then the Stokesian assumption
can be applied. It is convenient to introduce the Stokes stream
function ψ satisfying (2.8) which is given in Cartesian coordinates
by

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (3.4)

To obtain the dynamical equation satisfied by Stokes stream
function, we introduce the vorticity vector

ω⃗ = ∇ ∧ q⃗ = −k⃗∇2ψ. (3.5)

Therefore, one can easily get the following relations

∇ ∧ ∇ ∧ ω⃗ = k⃗∇4ψ, (3.6)

∇ ∧ ∇ ∧ ν⃗ = −k⃗∇2ϕ, (3.7)

where ∇
2 denotes Laplace operator and k⃗ is the unit vector

perpendicular to xy-plane.
Applying the operator ∇∧ to Eq. (2.9) and then using the relations
(3.6) and (3.7) we get

− (µ+ κ)∇4ψ − κ ∇
2ϕ = 0. (3.8)

Also, substitution of relations (3.5) and (3.7) into Eq. (2.10) with
the aid of (3.3), we get
γ ∇

2
− 2κL2


ϕ − κL2 ∇

2ψ = 0. (3.9)

Eliminating themicrorotation ϕ between (3.8) and (3.9), we obtain

∇
4 

∇
2
− ℓ2


ψ = 0, (3.10)

where ℓ2 =
(2µ+κ) κ L2

(µ+κ) γ
.

The non-dimensional microrotation can be then written as

ϕ = −
 1
2∇

2ψ (1)
+ mℓ2 ψ (2) (3.11)
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