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h i g h l i g h t s

• A novel method to deal with the boundary vortices.
• The instantaneous circulation is conserved at each time-step.
• The fluctuating pressure coefficient can be obtained well.
• The accuracy of the surface pressure coefficient improves better.
• This scheme can be extended to the other vortex method and any bluff body.
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a b s t r a c t

In the existing stream function based vortexmethods, the solution to deal with the boundary vortex blobs
is mainly eliminating the blobs that penetrate the cylinder and compensating the lost vorticity in the
next time step. However, the instantaneous vorticity cannot be guaranteed to be zero, which leads to
inaccuracy fluid forces. In this paper, a novel vortex scheme based on instantaneous vorticity conserved
boundary conditions (IVCBC) is proposed to deal with the boundary vortices over a circular cylinder.
Instead of eliminating the blobs inside, it introduces identical number of new vortex blobs outside the
cylinder to counteract the strengths of the ones inside to ensure the instantaneous vorticity zero, and keep
the cylinder’s surface being streamline. Long time simulation of two-dimensional viscous incompressible
flows is performed at Reynolds numbers 9.5 × 103, 5.5 × 104, 1 × 105 and 1.4 × 105. The results reveal
that the proposed method is converged, and it significantly improves the precision of predicting the fluid
forces, especially the fluctuating fluid forces and the Reynolds stress. Furthermore, this method can be
extended to models of multiple circular cylinders, and any shape bluff bodies.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years, the vortex method based on stream function-
boundary integer [1] is widely used to simulate flows around bluff
bodies (Liang et al. [2], Afungchui et al. [3], Huang et al. [4], Fu
et al. [5], Sun et al. [6], Chen et al. [7], Taylor et al. [8], Larsen
et al. [9], Yamamoto et al. [10]). This method is very promising
for its following advantages: firstly, only a small part of the flow
region where vorticity appears needs to be calculated; secondly,
no mesh is needed and thus it is a mesh free method; thirdly,
in external flows, the vortex method can treat boundary without
restricting the computational domain to a finite domain; and lastly,
the turbulence model is not needed at high Reynolds numbers.
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The stream function based vortex method is one version of
pure Lagrangian based vortex methods. According to the existing
literature, vortexmethods of other pure Lagrangian based versions
have been studied deeply. Mustto et al. [11,12] introduced the
boundary layer theory into vortex method, and the computation
precision was increased. Guedes et al. [13] attempted to improve
themethod ofMustto et al. [11,12] by satisfyingmass conservation.
Huang et al. [14,15] exploited a fast vortex core spreading method
to improve the panel based vortex method. Rasmussen et al. [16]
presented a novel vortex method to simulate the turbulence.
However, although the stream function based vortex method is of
great significance for practical application, it is paid less focus and
the performance needs to be improved.

Thus, we study the stream function based vortex method, and
make an effort to improve this method’s calculation precision. We
first started to investigate the flow over a circular cylinder, and
found a very important detail that is how to deal with the vortex
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blobs penetrating into the cylinder. In the previous method, the
vortex blobs that penetrate the cylinder are eliminated generally,
and the lost vorticity is compensated for in the next time step. This
guarantees that the sum of all the vortex strengths is equal to zero
during the entire time-steps. However, the total vortex strengths in
each time-step are not zero, namely the instantaneous vorticity is
not conserved. This will impair the accuracy of calculating the fluid
forces acting on the cylinder, which will be shown in the following
content.

In this paper, a novel scheme is employed to deal with the
boundary vortices. Instead of eliminating the vortex blobs in-
side the cylinder, we introduce identical number of new vortex
blobs outside of the cylinder to counteract the strengths of the
ones inside through using Circle Theorem and Image Method [17].
This ensures the instantaneous vorticity is conserved. Meanwhile,
the total vorticity is also conserved from the point of the en-
tire time-steps. To verify this method, we perform simulations of
two-dimensional, incompressible, unsteady flow around a circular
cylinder at different Reynolds numbers. The non-slip condition is
enforced on a finite number of points on the surface of the cylin-
der. The convection of vortices is implemented using a two-order
Adams–Bashforth scheme, and the diffusion of vortices is calcu-
lated by using randomwalkmethod. Comparisonwith experimen-
tal results shows the correctness and effectiveness of the proposed
method. Particularly this method displays its capacity in calculat-
ing the fluctuating fluid forces and Reynolds stress.

2. The governing equations

Consider the flow is immersed in an unbounded domain with a
uniform flow and free streamwhich is assumed incompressible, 2-
D and Newtonian with constant properties. Its governing equation
is Navier–Stokes equation,

∇ · u = 0, (1)
∂u
∂t

+ u · ∇u = −
1
ρ

∇p + v∇2u, (2)

where u is the velocity vector, p the pressure, ρ the density of
fluid, and v the kinematic viscosity of the fluid. All parameters in
the paper are non-dimensionalized by the amplitude of velocity
u and radius r . In this paper Re = 2ur/v is Reynolds number,
1t is time-step; t is the non-dimensionalized length of time for
calculation; N is vortex number. Taking the curl on both sides of
the Navier–Stokes equation, we can obtain

∂ω

∂t
+ u · ∇ω =

Dω

Dt
= v∇2ω + ω · ∇u, (3)

where ω is the only non-zero component of vorticity vector (in a
direction normal to the plane of the flow). For 2-D flowω ·∇u = 0,
and ω has one non-zero component ω that is

∂ω

∂t
+ u · ∇ω = v∇2ω. (4)

3. The IVCBC vortex method

The IVCBC vortex method is based on stream function, and it
belongs to pure Lagrangian vortex method. Differently from the
conventional stream function based vortexmethods, the boundary
vortices are better dealt with rather than being directly eliminated.
The scheme of dealing with the boundary vortices is introduced in
detail in the following part.

3.1. The basic of vortex method

The solution to Eq. (4) can be obtained by using the vortex
method. This method uses an algorithm that splits the convective
and diffusion operator in the following form

∂ω

∂t
+ u · ∇ω = 0, (5)

and the viscous diffusion part is

∂ω

∂t
= v∇2ω. (6)

The solution to Eq. (4) is given by the Biot–Savart law [18],
which is the fundamental law of the magnetic force, i.e., currents
induce magnetic induction intensity. Many physical phenomena
in hydrodynamics can be analogized to that in electromagnetism.
Therefore, the formula of induced vortex velocity can be expressed
by the Biot–Savart law.

u(r, t) = −
Γr

2π
k(r − r′){1 − exp[−w(r2/σ 2)]} + u∞, (7)

in this particular equation u∞ denotes the velocity at infinity,w =

1.25643 is a constant. The radius of vortex core is

k(r − r′) =
−(y − y′)(x − x′)

|r − r′|

ε(r) = c
√
vdt,

(8)

where r′ is the location of vortex points, c equal to 2, and r the
field location in the velocity field. Thus according to the Biot–Savart
law, the velocity vector of each vortex can be calculated. The
convection motion of each vortex generated on the body surface
can be determined by integrating each vortex path equation,which
can be written as

1xc = u(r(t), t)1t

1t =
2πk
N
,

(9)

where 1xc is the displacement of a vortex blob resulting from
convection, r(t) its position vector, and u its velocity vector, N
vortex numbers on the surface of circular cylinder. The time step
1t is calculated from an estimate of the convective length and
velocity scales of the flow.

The process of viscous diffusion, governed by Eq. (6), is
simulated by the random walk method [19]. The form of Eq. (6)
is the same with the one-dimensional heat diffusion equation, and
its fundamental solution is a Green function, which is similar to the
probability of a random variable. For the two-dimensional cases,
the probability density function is irrelevant. Thus, the random
walk of the vortex blob in the x and y directions can be obtained
by solving Eq. (8) so that1x and1y are calculated from

1x =


8Re−11t ln(1/P) cos(2πQ )

1y =


8Re−11t ln(1/P) sin(2πQ ),

(10)

where Re is Reynolds number, P and Q are random numbers in the
interval of 0 and 1. If the positions of the vortex blobs and the time-
step are given, the total displacements of vortex blob calculated by
Adams–Bashforth method.

xi(t +1t) = xi(t)+ [1.5ui(t)− 0.5ui(t −1t)]1t +1xi
yi(t +1t) = yi(t)+ [1.5vi(t)− 0.5vi(t −1t)]1t +1yi.

(11)
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