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a b s t r a c t

We derive the dispersion relation for periodic traveling water waves propagating at the surface of water
possessing a layer of constant non-zero vorticity γ1 adjacent to the free surface above another rotational
layer of vorticity γ2 which is adjacent to the flat bed. As a by-product we give necessary and sufficient
condition for local bifurcation in the frame-work of piecewise constant vorticity. Moreover, we give
estimates on the speed at the free surface of the bifurcating laminar flows. These estimates involve only
the vorticity γ1, the mean depth of water d and the depth at which the jump in vorticity occurs. A stability
result for certain laminar flows is also presented.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

We devote this paper to the subject of wave–current interac-
tions [1–3] which despite its recognized importance has seen little
advancement—a circumstance generated by the complexity of the
problem. The term ‘‘current’’ describes here a flow with a flat free
surface. The prevailing feature of currents is the existence of shear
in the vertical direction. The extensive studies by Peregrine [4] and
Jonsson [2] document the interaction of surface gravitywaveswith
vertically sheared currents.

Even the uniform currents (i.e. irrotational flows), which are the
simplest ones, have awaited a long time until they had a firm theo-
retical basis that came through the extensive studies of the Stokes
waves [5] and the flow beneath them concerning particle trajec-
tories, behavior of the pressure [6–9]. The substantial progress in
themore complicated scenario of a non-uniform current came only
relatively recently through [10] where the existence of small and
large amplitude steady periodic water waves with a general (reg-
ular) vorticity distribution was proved. Paper [10] was followed
by a bulk of papers treating a variety of topics like symmetry
[11–13], stability [14], regularity of the free surface and of the
stream lines [15–19] and allowing for more sophisticated features
like stratifications [20–22], stagnation points and critical layers
[23–27] or the presence of a singular (merely bounded or piece-
wise constant) vorticity distribution [28–31].

As far as our paper is concerned we shall deal here with non-
uniform currentswhosemain characteristic is the presence of non-
zero vorticity in the flow and, in addition, we assume that the
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vorticity has a discontinuous piecewise constant distribution. This
situation is of practical relevance and can be observed in regions
where there is a rapid change of the current strength cf. [2]. The
distribution of vorticity in our setting is as follows: we consider
a layer of constant non-vanishing vorticity γ1 adjacent to the
free surface above a rotational flow of vorticity γ2. On physical
grounds, this situation is justified by the fact that rotational wind
generated waves possess a layer of high vorticity adjacent to the
wave surface [32,33], while in the near bed region there may
exist currents resulting from sediment transport along the ocean
bed [34].

The main topic that we address here is the dispersion relation
for small-amplitudewaves. This relation indicates how the relative
speed of the bifurcating laminar flow at the free surface varieswith
respect to certain parameters like thewave-length, themeandepth
of the flow, and – in the case of a piece-wise constant vorticity like
the one we consider here – the position of vorticity jumps. The
dispersion relation we obtain recovers the corresponding formula
(23) from [35] for the case of a layer of constant non vanishing
vorticity adjacent to the flat bed within an irrotational flow as well
as the dispersion relation (81) from [28] in the context of a layer of
constant non-zero vorticity adjacent to the free surface above fluid
in irrotational flow.

To treat the above mentioned vorticity distribution we adopt
the framework of weak solutions to the free boundary Euler equa-
tions andwe refer the interested reader to [28]where the existence
of steady two-dimensional periodicwaterwaves of small and large
amplitude in a flowwith an arbitrary bounded (but discontinuous)
vorticitywas proven in the context of a fixedmass flux. For the con-
text of a fixed mean-depth we refer the reader to [36]. Concerning
the main topic of our paper, it was shown in [37,38] that the dis-
persion relations corresponding to the fixed mean depth approach
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coincide with those in [28,35] corresponding to the fixedmass flux
point of view.

We also like to mention that the dispersion relation for cap-
illary–gravity waves for the situation of a layer of vorticity adja-
cent to the surface above irrotational fluid as well as for the case of
an isolated layer of vorticity adjacent to the flat bed was obtained
in [39]. For recent results on dispersion relations for small ampli-
tude gravity waves with continuous non-constant vorticity we re-
fer the reader to [40].

We briefly summarize the content of the paper. After introduc-
ing the equations of motion in Section 2, we derive in Section 3 the
dispersion relation. Herewe also give necessary and sufficient con-
ditions which ensure that certain laminar flows give rise to waves
of small-amplitude. In Section 4 we present a stability result for
laminar flows in the spirit of [14].

2. The equations of motion

This paper considers two-dimensional steady periodic water
waves which travel over a rotational, incompressible and inviscid
fluid propagating in the positive x-direction over the flat bed y =

−d (for some d > 0) with the free surface y = η(x) being a small
perturbation of the flat free surface y = 0.We assume that the only
restoring force acting upon the fluid is gravity. In a reference frame
moving in the same direction as the wave with wave speed c > 0,
the equations of motion are Euler’s equations
(u − c)ux + vuy = −Px
(u − c)vx + vvy = −Py − g, (2.1)

together with the incompressibility condition

ux + vy = 0, (2.2)

whereby (u, v) denotes the velocity field, P is the pressure and g is
the gravitational constant. An assumption that we make through-
out the paper is that (u, v), P and the surface wave profile x →

η(x) are periodic in the variable x and for simplicity we choose the
period L = 2π . The vorticity (assumed to be piecewise constant)
of the flow is

ω := uy − vx.

Eqs. (2.1) and (2.2) are supplemented by the kinematic boundary
conditions

v = (u − c)ηx on y = η(x)
v = 0 on y = −d (2.3)

representing essentially a necessary and sufficient condition for
the flow to move along a boundary but not across/through the
boundary, and the dynamic boundary condition

P = Patm on y = η(x), (2.4)

which decouples the motion of the air above the free surface from
that of thewater. Here Patm denotes the constant atmospheric pres-
sure. The details about the validity of (2.1)–(2.4) are worked out
in [1]. To simplify the problem just presented we introduce the
stream function ψ defined (up to a constant) by the relations

ψx = −v, ψy = u − c.

One reasonable assumption (true for waves which are not near
breaking) is the absence of stagnation points in the flow. This as-
sumption can be analytically written as

u < c throughout the fluid. (2.5)

Due to (2.5) we have cf. [1,10] that the vorticityω is a single-valued
function of ψ , i.e.,

ω(x, y) = γ (−ψ(x, y)),

which finally yields the reformulation of (2.1)–(2.4) as the free
boundary value problem
1ψ = γ (−ψ) in − d < y < η(x),
|∇ψ |

2
+ 2g(y + d) = Q on y = η(x),

ψ = 0 on y = η(x),
ψ = −p0 on y = −d,

(2.6)

where Q is a constant related to the total head, and p0 < 0 is a
constant representing the relative mass flux, given by

p0 =

 η(x)

−d
(u(x, y)− c) dy.

We aim to further simplify the problem (2.6) by transforming it
into a problem in the fixed domainΩ := [−π, π]×[p0, 0]. The lat-
ter task is performed by means of the partial hodograph transform

q(x, y) = x, p(x, y) = −ψ(x, y) (2.7)

which, due to assumption (2.5), provides a diffeomorphism from
the fluid domain toΩ and renders the problem (2.6) into the quasi-
linear elliptic boundary value problem(1 + h2

q)hpp − 2hphqhpq + h2
phqq − γ h3

p = 0 inΩ,
1 + h2

q + (2gh − Q )h2
p = 0 on p = 0,

h = 0 on p = p0,
(2.8)

where the unknown function h defined onΩ by

h(q, p) := y + d

represents the height above the flat bed and is even and of period
2π in the q-variable. The absence of stagnationpoints is nowequiv-
alent to the elliptic non-degeneracy condition

hp > 0 inΩ.

The discontinuous vorticity regime requires a weak formulation of
the above system as done in [28] where the authors showed that
(2.8) is equivalent to the problem


1 + h2

q

2h2
p

+ Γ (p)


p

−


hq

hp


q
= 0 inΩ,

1 + h2
q

2h2
p

+ gh =
Q
2

on p = 0,

h = 0 on p = 0,

(2.9)

whereby Γ is defined by

Γ (p) =

 p

0
γ (s) ds, p ∈ [p0, 0].

By a solution of (2.9) we understand a function h ∈ W 2,r
per (Ω) ⊂

C1,α
per (Ω), with r > 2

1−α , (for a fixed α ∈ (1/3, 1)) that is a gen-
eralized solution cf. [41, Section 8]. A family of laminar solutions,
i.e. parallel shear flows with flat free surfaces, parametrized by
λ > 2max[p0,0] Γ is given by

h(p) := h(p, λ) =

 p

0

ds
√
λ− 2Γ (s)

+
Q − λ

2g
∈ C1,α([p0, 0]) (2.10)

cf. [28]. The parameter λ is related to wave speed at the flat free
surface y = 0 of the laminar flow by the formula
√
λ = (c − u)|y=0 =

1
hp(0)

,
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