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h i g h l i g h t s

• The class-I Bragg resonant waves are solved analytically.
• Multiple equilibrium-state resonant wave systems with time-independent wave spectrum are found.
• Bifurcations with respect to wave propagation angle, water depth, bottom slope and nonlinearity are found.
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a b s t r a c t

In this paper, the class-I Bragg resonant waves are investigated in the case that a primary surface
wave propagates obliquely over the bottom with ripples distributed in a very large area. Two kinds of
equilibrium-state resonant wave systems with time-independent wave spectrum are found. In all cases,
the primary and resonant wave components contain most of the wave energies. For the first kind, the
primary and resonant wave components have the same amplitude. However, for the second kind, they
contain different wave energies. Especially, the bifurcations of the equilibrium-state resonant waves with
respect to the wave propagation angle, the water depth, bottom slope and nonlinearity are found for the
first time. To the best of our knowledge, these two kinds of equilibrium-state class-I Bragg resonantwaves
and especially the bifurcations have never been reported. All of these might deepen and enrich our un-
derstanding about the Braggwave resonance.Mathematically, unlike previous analytic approacheswhich
regard the considered problem as an initial-value one, we search for the unknown equilibrium-state res-
onant waves from the viewpoint of boundary-value problem, using an analytic method that has nothing
to do with small/large physical parameters at all.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In his pioneering work, Phillips [1] found the resonance crite-
rion of a quartet of progressive waves in deep water:

k1 ± k2 ± k3 ± k4 = 0, ω1 ± ω2 ± ω3 ± ω4 = 0, (1)

where ki denotes the wave number, ωi =
√
gki with ki = |ki| be-

ing the angular frequency given by the linear wave theory in deep
water, g is the acceleration due to gravity, respectively. Phillips [1]
found that the amplitude of the resonant wave component, if it is
zero initially, grows linearly with time. When Phillips’ resonance
criterion (1) is fully or nearly satisfied, Benney [2] established the
evolution equations of wave mode amplitudes, and demonstrated
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the well-known time-dependent periodic exchanges of wave en-
ergy governed by Jacobian elliptic functions.

Same as the Stokeswave [3–5], therewere some attempts to ob-
tain the equilibrium states of this quartet resonance with the time-
independent wave amplitude, angular frequency andwavenumber.
In the context of perturbation techniques, the equilibrium states
of the quartet resonance have not been found at an order higher
than three, because perturbation results (mostly at the third or-
der of approximation) contain the secular termswhen Phillips’ cri-
terion is satisfied so that ‘‘the perturbation theory breaks down
due to singularities in the transfer functions’’, as currently pointed
out by Madsen and Fuhrman [6]. However, using an analytic ap-
proximation method for highly nonlinear problems, namely the
homotopy analysis method (HAM) [7–13], Liao [14] successfully
gained, for the first time, the equilibrium states of the quartet res-
onant progressive waves in deep water, which have no exchange
of wave energy at all between different wave components. In ad-
dition, Liao [14] found that there exist multiple equilibrium states
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of this quartet resonance in deep water, and especially the reso-
nant wave component may contain much less wave energy than
the primary ones.

Based on the homotopy, a basic concept of topology, the HAM
has many advantages over other analytic approximation tech-
niques for nonlinear problems. First, unlike perturbation tech-
niques, it has nothing to do with small/large physical parameters,
and thus is valid for more problems in science and engineering.
Besides, it provides us great freedom to choose the base-function
and equation-type of equations for high-order approximations.
Especially, different from all other analytic approximation meth-
ods, the HAM provides us a simple, convenient way to guarantee
the convergence of solution series. In addition, the HAM has been
proved to logically include some traditional analytic approxima-
tion methods, such as ‘‘the Lyapunov artificial small parameter
method’’ proposed by the famous Russian mathematician Alek-
sandr Mikhailovich Lyapunov (1857–1918), ‘‘the Adomian decom-
position method’’ which was developed from the 1970s to the
1990s by George Adomian, the chair of the Center for Applied
Mathematics at the University of Georgia, USA, and so on. Thus,
the HAMhas rather generalmeanings in theory. The HAMhas been
successfully applied to solvemany nonlinear problems in fluidme-
chanics, applied mathematics, physics, finance and so on. Espe-
cially, somenew solutionswere found bymeans of theHAM,which
had never been reported and neglected by other analytic approx-
imation methods and even by numerical techniques. All of these
illustrate the validity and novelty of the HAM. For details about
the HAM, please refer to the two books of Liao [8,11]. It should be
emphasized that the multiple equilibrium states of resonant wave
systems in deep water were first discovered by Liao [14] using the
HAM.

In 2012, Xu et al. [15] further applied the HAM to solve this
quartet resonance of progressive waves in finite water depth d
with flat bottom, when Phillips’ resonance criterion (1) with ωi =√
gki tanh kid is exactly satisfied. They confirmed that the multiple

equilibrium states of resonant waves also exist in finite water
depth. Meanwhile, the resonant wave component might contain
a small proportion of wave energy, too. Besides, they verified all
of their conclusions using the Zakharov equation. In addition, Liu
et al. [16] verify that the multiple equilibrium states also exist in
the resonance of multiple waves. Current, Liu et al. [17] confirmed
the existence of the steady-state resonant waves by experiments:
their experimental results agree quite well with the theoretical
ones reported in [16]. All of these confirmed the generality of the
multiple equilibrium-states of resonant wave systems in deep and
finite water.

A simple pendulum without damping, as plotted in Fig. 1, is a
good analogy for the equilibrium-states of resonant wave systems.
When the pendulum is at the lowest position initially, it will stay
at this equilibrium position forever. When the pendulum is dis-
turbed away from this equilibrium position, it oscillates periodi-
cally around it, with the periodic exchange of its potential energy
and kinetic energy. Thus, equilibrium-states of a dynamic system
are fundamental and important for us to have a global understand-
ing of it. Some complicated dynamic systems have multiple equi-
librium positions. The resonant waves as dynamical systems are
muchmore complicated than a simple pendulum: they havemulti-
ple equilibrium states. The equilibrium states of the resonant wave
systems found by Liao [14] in deep water and Xu et al. [15] in fi-
nitewater depth are like the equilibriumpositions of a complicated
dynamical system. Such kind of equilibrium states determine the
global characteristics of the dynamic system and thus belong to
a kind of fundamental property. Therefore, it is very important to
determine these equilibrium states of resonant waves, which are
helpful to deepen and enrich our understandings about resonant
waves. Note that such kind of equilibrium states are rather special

Fig. 1. Equilibrium state of dynamical systems.

Fig. 2. Sketch map of the class-I Bragg resonant waves.

in practice. Inmost cases, there often exist the time-dependent pe-
riodic exchanges of wave energy around these equilibrium states,
which can be described by the evolution equations of wave mode
amplitudes given by Benney [2]. However, Benney [2] did not re-
port the existence of the multiple equilibrium states of resonant
waves, which were first found by Liao [14] in deep water, con-
firmed by Xu et al. [15] in water of finite depth and Liu et al. [16]
for multiple wave interactions by means of the HAM.

Therefore, the equilibrium states of resonant waves are impor-
tant in physics for a better understanding of global characteristic
of a given resonant wave system. Domultiple equilibrium states of
resonant wave systems exist generally in other more complicated
cases? The answer is positive, as revealed in this article.

It is well-known that the resonance occurs for nonlinear
wave–bottom interaction, too. The simplest case is known as the
class-I Bragg resonance. It occurs when a primary surface wave
propagates over an undulated bed that contains ripples with a
single wavenumber kB. Without loss of generality, let kA denote
the wavenumber of the primary wave and kC that of the resonant
one, respectively. Note that the names of the so-called primary
and resonant waves can be interchanged, since there exists a
kind of symmetry on the perpendicular bisector of the bottom
wavenumber kB, as shown in Fig. 2 and illustrated later. So,without
loss of generality, we can simply call themwave A andwave C, too.

The corresponding class-I Bragg resonance criterion reads

kA − kB = kC , ωA = ωC , (2)

where

ωA =

g|kA| tanh |kA|d, ωC =


g|kC | tanh |kC |d

denote the wave angular frequency in the linear theory and d is
the water depth, respectively. The resonant wave results from the
resonant interaction between the primary wave and the bottom.
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