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a b s t r a c t

In the present paper two numerical schemes for propagating waves over a variable bathymetry in
an existing High-Order Spectral (HOS) model are introduced. The first scheme was first developed by
Liu and Yue (1998), and the second one is an improved scheme which considers two independent
orders of non-linearity: one for the bottom and one for the free-surface elevation. We investigate
the numerical properties (accuracy, convergence rate, efficiency) of both schemes with respect to the
numerical parameters on a simple configuration. To validate the proposed schemes, we first consider
Bragg reflection from a sinusoidal bottom patch — as an example of a small bottom variation around a
mean water depth. The second validation case focuses on a larger bottom variation with the study of
the shoaling of linear waves. Finally, an application is performed to demonstrate the applicability of the
proposed model to non-linear cases where the bottom variation is important. In this concern, the very
well documented test case of a 2D underwater bar is studied in detail. Comparisons are provided with
both experimental and numerical results.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The accurate modelling of surface gravity waves over non-
negligible bottom topography is of major interest in ocean
engineering, especially in the field of marine renewable systems.
These marine structures are intended to be deployed in limited
water depth, where the effect of variable bathymetry on localwave
conditions is very significant. Indeed,when entering shallowwater
zones, waves are strongly affected by the bottom through shoaling,
refraction, diffraction, reflection and the resulting variations in
local wave speed. Thus, the accurate description of the wave field
over variable depth is a prerequisite for the accurate prediction of
wave loads acting on structures in coastal zones.

For this purpose, a wide variety of non-linear flowmodels have
been developed during the last decades. Some of them are based
on the solution of the Reynolds Averaged Navier–Stokes equations,
such as the CFD models presented in [1], but the computational
effort with these models remains prohibitive. Thus, most of the
non-linear flow models for wave propagation were developed
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in the framework of the potential flow theory, considering that
the propagation in the ocean is mostly irrotational and inviscid
(neglecting wave breaking at the sea surface and dissipation due
to bottom friction).

The Boundary Element Model (BEM) (see for instance [2]) is
one of the methods used to represent wave propagation over non-
uniform depth in wide domains. The problem is solved on the
boundaries, allowing the reduction of the problem size. Moreover,
it is a very flexible method as it can account for a variable bottom
and very complex geometries, including structures. Nevertheless,
it requires the inversion of full matrices, reducing the efficiency
of the method. Some recent developments using the Fast Multiple
Acceleration technique (see [3,4]) intend to improve the efficiency
of the BEM model. Finite difference methods (see [5]) are also
flexible in terms of geometries, but as any volume-type method
it requires a high number of nodes to represent the whole
computational domain. However, this formulation leads to sparse
matrices allowing the use of advanced numerical procedures
and resulting in a good efficiency. Other methods for modelling
wave propagation over variable depth can also be found in the
literature such as Finite Element Methods [6,7] or a recent fully
dispersive coupled-modemodel described by Belibassakis et al. [8].
Boussinesq methods were initially developed for small relative
water depths in the framework of weakly non-linear waves,
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but the last developments of high order versions of Boussinesq
approximations developed by Bingham et al. [9] and Madsen
et al. [10] allow to account for larger water depths at little extra
computational cost which remains quite attractive.

Interesting properties of spectral methods in terms of con-
vergence have led to the development of numerous models. We
can first cite the Direct Method, introduced by Fenton and
Rienecker [11], which solves the problem on the free-surface (free-
surfacemethod) allowing a reduction of one dimension. Neverthe-
less, the required inversion of a fully populatedmatrixmakes it not
very efficient. The pseudo-spectral σ -transformmodel introduced
by Chern et al. [12] allows the modelling of more complex geome-
tries but still with a high computational time due to the necessity
to discretize the whole fluid domain. The pseudo-integral/spectral
method improved by Fructus et al. [13] uses a pseudo-spectral so-
lution added to an integral solution to cope with steeper cases and
variable bathymetries. The DNO (Dirichlet to Neumann Operator)
method was initiated by Craig and Sulem [14] for a flat bottom.
This method was extended to a variable bottom by Guyenne and
Nicholls [15] and Craig et al. [16] by introducing another opera-
tor depending only on the variation of the bottom. It was then im-
proved numerically by Guyenne and Nicholls [17].

In the present paper, we use the High-Order Spectral (HOS)
method. This non-linear potential method has been initially de-
veloped by West et al. [18] and Dommermuth and Yue [19] for a
flat bottom, and extensively validated for different configurations
in the LHEEA Lab., from regular waves up to irregular multidirec-
tional wavefields (see [20,21]). This model, named HOS-ocean is
available as an open-source version.1 The HOS formalism presents
expansions identical to the DNO method, as demonstrated in [22],
and several advantages. First of all, the problem is formulated on
the free surface, allowing a reduction of one dimension when solv-
ing the problem. Moreover, it allows the solution of the problem
with the fully non-linear free surface boundary conditions, it shows
excellent convergence properties and it has a low computational
cost. Therefore this method is very efficient and accurate, but is
initially limited to simple geometries in both horizontal and verti-
cal directions. Non-linear potential flow models cited above con-
sider a varying bottom but few of them were based on the HOS
scheme. As demonstrated in [23], the HOSmodel appears more ef-
ficient than the most advanced potential flow solvers, when com-
pared for wave propagation on uniform depth. Thus it appears
interesting to extend such a model to a variable bathymetry in or-
der to broaden its application range, while keeping the numeri-
cal efficiency. Liu and Yue [24] provided one study with the HOS
method which takes into account a variable bathymetry, and pre-
sented one simulation case but limited to a small variation of the
bottom. The first schemeused in the present paper is based on their
work. The second scheme is an improvement of the first one by
considering two different orders of non-linearity: one for the bot-
tom and one for the free-surface. This dissociation of the orders of
non-linearitywas presentedwith the DNOmethod in [17], andwill
be adapted here to the HOS formalism.

The two HOS methods presented (called original method and
improved method) are explained in detail in the present paper.
Some of the work with the original method presented hereafter
has already been partially introduced in [25]. For documenting the
accuracy of both schemes, a test case with a constant variation
of the bottom is computed to check the convergence on a sim-
ple geometry with a non-linear reference solution. It is a highly
demanding test case because a constant but wrong depth is im-
posed in the whole domain. Then both methods are applied to 2D
monochromatic cases. Bragg reflection from a sinusoidal bottom

1 https://github.com/LHEEA/HOS-ocean/wiki.

Fig. 1. Description of the fluid domain.

patch will first be considered, as an example of a small bottom
variation around a mean water depth. To validate our models with
larger bottom variation, the shoaling of linear waves is studied in
the second case. Finally, two well-documented application cases
(both numerically and experimentally) are provided. We validate
and compare the two methods for realistic and large bottom vari-
ations. The first case considers the transformation of a non-linear,
monochromatic wave as it travels up and over a submerged bar
with a mild slope. This validation case has often been used as a
discriminating test case for non-linear models of surface waves
propagation over a variable bottom because it requires the accu-
rate propagation of waves in both deep and shallow water. A com-
parison to the experimental data and to other numerical results
is provided, as well as a comparison of both methods. The second
application case considers the same experimental set-up but with
a steeper slope, and proves the ability of our models to represent
cases with strong variations of the bathymetry and large bottom
gradients.

2. Methods and algorithms

2.1. Hypothesis and formulation of the problem

A 2D rectangular fluid domain and a Cartesian coordinate
system with the origin O located at one corner of the domain are
considered. The z axis is vertical and oriented upwards, with the
level z = 0 corresponding to the mean water level. z = η (x, t)
represents the free surface elevation, h the total water depth, h0
the mean depth and β (x) the bottom variation, such as −h (x) =

−h0 + β (x). Thus, the domain considered is: −h0 + β (x) ≤ z ≤

η (x) (see Fig. 1).
An infinite domain assumption is adopted with the assumption

of periodic boundary conditions in the horizontal plane.
A potential flow formalism is used (incompressible and inviscid

fluid, irrotational flow). Given these assumptions, the velocity V⃗
derives from a potential φ: V⃗ (x, z, t) = ∇⃗φ and the continuity
equation becomes the Laplace equation in the fluid domain D:

1φ = 0. (1)

Following Zakharov [26], both kinematic and dynamic non-
linear free-surface boundary conditions (FSBC) arewritten in terms
of surface quantities η and φ̃ (φ̃ (x, t) = φ (x, z = η, t)), and
expressed at the exact free-surface position z = η:
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