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h i g h l i g h t s

• Global bifurcation branches of internal capillary–gravity waves are computed.
• All possible behaviors from a global bifurcation theorem are realized.
• A numerical method is developed for computing the boundary of bifurcation surfaces.
• The role of the waves’ second harmonic in its bifurcation structure is discussed.
• Steep waves limited by self-intersection at both crests and troughs are computed.
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a b s t r a c t

A vortex sheet formulation of irrotational, incompressible Euler flow is used to compute periodic traveling
waves at the interface between two constant-density, two-dimensional fluids, including waves with
overturned crests. Branches of traveling waves are computed via numerical continuation, which are
jointly continuous in the physical parameters: Bond number, Atwood number and mean shear. Global
branches are computed, for various choices of parameters, illustrating the termination criteria of the
global bifurcation theorem of Ambrose et al. (2015). The dependence of the branches, and their termini,
on the physical parameters are probed via a boundary continuation method. Bifurcation surfaces are
computed; these surfaces are both overturned and self-intersecting. The connection between the second
harmonic of a Stokes’ wave expansion and the shape of these surfaces is discussed.

Published by Elsevier Masson SAS.

1. Introduction

Westudy the irrotational, incompressible Euler equations at the
interface between two constant-density fluids; these are an upper
fluid and a lower fluid. The fluid regions are infinitely deep in the
vertical direction and periodic in the horizontal direction. We seek
traveling wave solutions, or solutions for which the free surface is
of permanent form and steadily translating. Waves are computed
on this interface numerically, including the effects of the physical
parameters of surface tension, gravity, mean shear, and density
ratio. We compute large amplitude solutions, including those with
overturned crests or troughs, up to the limit of self-intersection.

Since the fluids are irrotational in the bulk, the vorticity is equal
to zero inside either fluid region. The velocity may jump at the
interface (specifically, the tangential component of the velocity
may jump, while the normal component must be continuous) [1],
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thus, the vorticity is not identically zero but is instead measure-
valued and supported only on the interface. The interface is thus
referred to as a vortex sheet.

We denote the densities of the fluids as ρ1 and ρ2, which can
each be any non-negative, constant value (not both zero). A useful
non-dimensional quantity, then, is theAtwoodnumber, At = (ρ1−

ρ2)/(ρ1+ρ2). The surface tension parameter is τ , which is taken to
be a positive constant, and the constant acceleration due to gravity
is g , which may be any real value.

The present work has its foundation in prior work by three of
the authors. In [2], a novel formulation for the interfacial traveling
wave problemwas introduced, and was used for both analysis and
computing. In particular, in the case in which the two fluids have
equal density (i.e., At = 0), a local bifurcation theorem was ap-
plied to show the existence of small-amplitude traveling waves,
for any value of the mean shear, for fixed, nonzero surface ten-
sion. Numerical solutions were computed using a quasi-Newton
method in Fourier space, similar to [3]. Subsequently, the same au-
thors followed up in [4], in which water waves were studied. The
water wave is the special case of the vortex sheet in which the up-
per fluid is taken to have density equal to zero (i.e., At = 1); the
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gravity parameter was able to be taken to be positive, negative, or
zero. The analysis of this work used the implicit function theorem
to demonstrate that Crapperwaves [5], which are a family of exact,
pure capillary travelingwaterwaves, can be perturbed through the
inclusion of gravity; see also [6,7] for further developments in this
area. The computational portion of [4] again used a quasi-Newton
method in Fourier space to compute these gravity-perturbed Crap-
per waves; a new wave of maximum amplitude was found when
the gravity parameter takes a specific small, negative value.

Further analysis has since been carried out by twoof the authors
and Strauss [8]. In this work, a global bifurcation theorem was
proved, for traveling Stokes’ waves between fluids of arbitrary
constant densities. In the case that the two fluids have different
densities, the main theorem of [8] specializes to the following:

Theorem 1. For all choices of the surface tension parameter τ > 0,
the spatial periodicity parameter M > 0, the mean shear parameter
γ0 ∈ R, the densities of the fluids ρ1, ρ2 ≥ 0 (with ρ1 ≠ ρ2)
and the gravity parameter g ∈ R, there exists a countable number
of connected sets of smooth non-trivial symmetric periodic traveling
wave solutions (bifurcating from a quiescent equilibrium) for the two-
dimensional gravity–capillary vortex sheet problem. Each of these
connected sets has at least one of the following properties:

(a) it contains waves whose interfaces have lengths which are
arbitrarily long;

(b) it contains waves whose interfaces have curvature which is
arbitrarily large;

(c) it contains waves where the jump in the tangential component of
the fluid velocity across the interface or its derivative is arbitrarily
large;

(d) its closure contains a wave whose interface contains a point of self
intersection;

(e) it contains a sequence of waves whose interfaces converge to a flat
configuration but whose speeds contain at least two convergent
subsequences whose limits differ.

One might say that a shortcoming of the theory of global
bifurcations is that, while a variety of possible behaviors along
bifurcation curves can be identified, the theory does not generally
identify which of these behaviors in fact occur. We thus address
this question via simulation. We have been able to find all of the
behaviors, (a) through (e), computationally, for some choices of
parameter values. For example, cases (a), (b), and (c) all occur in
the density matched cases, and are reported in [2]. Case (d) occurs
at the generic choice of parameter values in this work, and is well
known to occur for the Crapper family ofwaves (At = 1, g = 0) [5].
The most controversial is case (e), since in analytical work in the
absence of surface tension, this phenomenon can typically be ruled
out by a maximum principle argument; one example of such an
argument is in [9]. In the presence of surface tension, themaximum
principle argument is not available because of the larger number of
derivatives.We find that outcome (e) can occur for certain negative
values of the gravity parameter; this is illustrated in Fig. 1.

In addition to computing individual branches of traveling
waves, we seek to understand how these branches depend on the
physical parameters. We focus on the termini of these branches,
seeking to observe how the extreme wave’s character varies
from branch to branch. The extreme wave in the generic case is
self intersecting, case (d) of the global bifurcation theorem. We
ask whether this extreme wave, with a self-intersecting profile,
includes a bubble (or droplet) entrained into the upper or lower
fluid.We explore the extent to which small amplitude asymptotics
can be used to predict this behavior. We also compute surfaces on
which traveling waves exist (global bifurcation branches with one
of the physical parameter varied) and observe the character of the
boundaries of these surfaces.We develop a new numerical method

to compute these boundaries called BCM (boundary continuation
method). We observe that these surfaces, just like the waves, are
both overturned and self-intersecting. BCM allows us to compute
traveling waves which are not on a global bifurcation branch as
described by Theorem 1, i.e. they are not on branches of traveling
waves which are connected to small amplitude with fixed physical
parameters.

There are numerous studies of the similar problem without
surface tension. For example, the case of τ = 0 with At varying
has been numerically studied by Vanden-Broeck and Turner
[10,11]. They observe that the maximal waves are near turning
points in the speed–amplitude plane (i.e., the bifurcation curves
spiral in). Another early study is byMeiron and Saffmanwith τ = 0
and different values of At.

With surface tension, the special cases At ∈ {0, 1} have been
studied several times, including, aswe havementioned, by some of
the authors in [2,4,8].Modern studies of the caseAt = 1,with small
surface tension τ ≈ 0, include both the infinite [12] and finite
depth cases [13]. A host of classical and overturned travelingwater
waves (At = 1) have been computed by Okamoto and colleagues,
manyofwhich are presented in themanuscript [14]. Our numerical
work differs in flavor from much of that in the literature in our
focus on the global bifurcation picture, computing the location
in parameter space of waves of extremal displacement and self
intersection. The numerical methods described herein require that
the vortex sheet does not self intersect; traveling waves can be
computed with self intersections (or bubbles) via other methods,
see [15].

Other works have considered the case of two fluids, an upper
layer of finite depth and a vacuum above; in this setting, there
is an interface between the two fluids, and an upper free surface
[16,17]. Finally,wemention that there are also experimentalworks
on this subject, such as [18–21]. Of course, in addition to periodic
traveling waves, solitary waves are also considered, for example in
the numerical work [22].

The works just described all considered the Euler equations.
Of course, in interfacial fluid dynamics, there are also many
approximate models which have been developed, such as the
Korteweg–de Vries equation and the Benjamin–Ono equation,
among others. Some relevant papers using model equations
are [23–26]. Another kind of approximation technique is amplitude
expansion methods; the papers [27–30] make such expansions
in the manner of Stokes. The beginnings of such an amplitude
expansion for internal waves on the vortex sheet are derived
herein.

The remainder of the paper is organized as follows. In Section 2,
we will give the equations of motion for our capillary–gravity
interfacial fluid problem. This includes giving the traveling wave
ansatz, as developed by the authors in [2]. In Section 3, a
weakly nonlinear theory is developed, and the second harmonic
of a Stokes’ wave is calculated for generic parameter values.
In Section 4, our numerical methods are described, including
descriptions of two methods for exploring parameter space: one
based on adaptive sampling and another which uses continuation
to trace the boundaries of where traveling waves exist (BCM).
Numerical results from these algorithms are given in Section 5.
Conclusions and future research areas are presented in Section 6.

2. Formulation

We start from the formulation developed by the same authors
in [2,4], which we now describe. The traveling wave equations
are derived from the evolution equations for a vortex sheet at the
interface of two incompressible irrotational fluids. Aswith any free
boundary problem, both the interface and its evolution must be
described. We write the free surface as (x(α, t), y(α, t)), define
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