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a b s t r a c t

This paper is one of two articles, wherewe present a newwall slip formulation based on a series expansion
involving both differential in space and exponential forms of wall shear stress. In the first of these
articles, we presented and described this new formulation using Phan-Thien–Tanner fluid as case study.
Meanwhile, this second paper analyzes the new slip formulation for Newtonian Fluid. Unlike in the first
paper, here, we have considered both the exponential and differential forms, though truncated at three
terms each. Thus, we use our new truncated triple-slip-coefficients wall slip law to analyze Newtonian
fluid in different systems. In particular, we study the planar Couette and planar Poiseuille problem, where
two infinitely long and parallel plates have been used.

For this part also, slip velocities and shear stresses at the walls are scrutinized for both problems.
Further, as the Couette problem is pressure independent; the differential formof the slip law is considered
for Poiseuille problem only. In addition, the pressure and flow-rate are studied for various slip coefficients
for Poiseuille flow case using condensed forms of the triple-slip-coefficients. Our results obtained prove
reasonable as represented by physically realistic plots herein. This feasibility is especially dictated by the
velocity profile across channel width for both application problems. More importantly, results obtained
for Poiseuille problem is corroborated with experimental data. Therefore, we can infer from all these, that
this new model has the potential of providing results which can match experimental data, that is, if the
three slip-coefficients are properly chosen.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the past, researchers in the field of hydrodynamicsweremore
interested in flow field inside a fluid domain. As a result, their
attention was least focused on properly modeling of the boundary
conditions at the periphery. Consequently, it was common to
assume that the liquid layer closest to the solid boundary sticks
to it meaning equal velocities for two interfaces in contact. This
boundary condition is widely referred to as the ‘‘no-slip’’ boundary
condition.

In 1827, this issue caught the attention of Navier [1], who
constructed the first ever slip boundary condition. In his postulate,
he suggested that the slip velocity be proportional to the tangential
component of the stress, and this was referred to as the linear
Navier-slip boundary condition. The fundamental definition of this
initial postulate, [2,3], was based on the idea that for a velocity
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profile u the slip velocity of a liquid tangent to wall whose normal
is n is defined as

uslip = Lslip[n · (∇u + (∇u)T)]t, (1)
where T denotes transpose, t refers to the tangential-component,
and constant parameter Lslip has the dimension of length, thus the
name slip length. We add that Maxwell who defined an identical
slip velocity for cases of Newtonian gases also supported this
law [4].

Typically, the slip length (Lslip) of common fluids have nanome-
ter to micrometer order of magnitude [5,3]. Hence, when the char-
acteristic length scale of flow system is not much larger than this
slip-length, some variation of Eq. (1) should be taken into account
to model slip. This suggests a non-dimensional number defined by
the ratio of slip-length to a characteristic length scale dictated by
the flow or the geometry (Lc). This deterministic slip ratio has been
widely referred to as the slip-number. In fact, for gases the mean
free path (lm) is widely used in characterizing the degree of slip [4]
whose ratiowith characteristic distance defines the Knudsen num-
ber (Kn). Generally, lm ≈ 500 nm for liquids and according to this,
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slip effects are important when the flow length-scale becomes of
the order of a few micrometers.

Until recently, Navier-slip phenomenological law was slow to
gain popularity as most researchers still continued to use the no-
slip boundary condition [6,7]. Perhaps because the no-slip con-
straint seems to validate experimental predictions, contrary to
viscous flows in closely confined conduits. Nonetheless, lately,
fluid researchers have started considering these effects as some
were noticing non-zero slip velocity of fluids on their bound-
ing walls [8–14,5]. It is realized that a deeper understanding of
this phenomenon will be especially crucial for microfluidic sys-
tems, [15], where slip length becomes around 10% of the relevant
dimension of the domain. For these cases, underestimation of wall
slippage can cause substantial error in calculation of velocity pro-
file and axial evolution of flow.

The aforementioned systems are extremely relevant for con-
temporary science. For example, liquid encroachment through
novel microcapillary channels [16–18] can be affected by the
slip-velocity at the wall. Additionally, flow around conduit-bound
microparticles [19–24] like blood cells should be analyzed by con-
sidering a proper slippage conditions at the surface of suspended
bodies. However, such boundary conditions have never been taken
into account in the flow analysis of mesoscale transport phenom-
ena.

A proper estimation of this effectmay have industrial impact, as
it leads to significant corrections in formulations related to several
modern technologies like, for example, micro-rheology [25]
and polymeric micro-extrusion [26–28]. Remarkably, this new
consideration can even be important in large-scale aerodynamic
calculations for drag reduction and optimization if the boundary-
layer thickness approaches to micron size.

With recent rapid advancements of measurement technique
with high precision instruments, slip boundary conditions are
gradually getting the attention of experimentalist. Their experi-
ments have yielded direct or indirect evidence and measurement
of slip. Such evidence have been brought to light by employing
techniques such as particle image velocimetry (PIV) [15], near-field
Laser velocimetry [29], streaming potential [30]. Further,measure-
ments techniques have also included magnetic resonance imaging
and laser Doppler anemometry [31], although we note that such
imaging still suffers from limitation in spatial resolution.

In the present paper, our purpose is to continue the develop-
ment of a semi phenomenological relation for wall slip velocity,
which was first presented in our first paper, [32]. In this article,
our new slip model is studied and assessed, considering Couette
and Poiseuille planar flows of Newtonian fluids. Although existing
slip laws provide a foundation in setting-up our formulation, we
also intend to show that they can be considered as a sub-fold of
our intended generalization of slip velocity. So, firstly, in Section 2
our new formulation together with a review of commonly used
wall-slip equations are briefly presented. Next, we expect our new
generalization to incorporate every fluid interaction at the neigh-
borhood of a fluid–solid boundary of some common flow con-
figurations. According to this, the new development is rigorously
applied in a planar-Couette and planar-Poiseuille flow system in
Section 3, together with their respective solutions. In the next seg-
ment, Section 4, we analyze and discuss the results and feasibility
of the theory. Finally, this paper is summarized and concluded in
Section 5.

2. Theory and formulation of wall slip

Since the postulation of the initial slip law by Navier, many
alternatives have been formulated, [12], and the use of no-
slip boundary condition has reduced considerably. Hence, in
this section, we enumerate and concisely describe a few of the

most common wall-slip theories. The choices of these slip laws,
reviewed here, are also based on the fact that they include other
sub-sets of familiarwall slip postulates. Thus, the reviewpresented
here, though aligned with the focus of this paper, is straight-to-
the-point and could be inadequate for a complete understanding
of slip phenomenon. For this reason, for additional familiarity
with literature of wall slip we recommend that the reader visits
the following three sources: First, the review paper that presents
experimental studies of boundary slip by Neto et al. [12], and next,
the book chapter Microfluidics: The no-slip Boundary Condition
in [3], and finally, the review of slip (depletion) of polymer
solutions in viscometers [27]. In addition, we also suggest the
reading of review paper by Hatzikiriakos [33]—where rheology of
both static and dynamic slip is reviewed in relation to polymer
melts.

2.1. Partial review of existing approach

Asmentioned before, an earlier attempt to address this slippage
problem was put forward by Navier [1]. According to that theory
(which is depicted in Eq. (1)), the slip velocity of a flow profile is
proportional to the wall shear stress. It follows that this constant
of proportionality is the ratio of slip distance b to viscosity η (i.e.
b/η). This slip distance, pivotal to all subsequent models reviewed
here, is a characteristic slippage length equivalent to the Navier
slip distance Lslip in Eq. (1). It is defined as the stretch beyond
the solid boundary up-to the position where the velocity must
extrapolate to give zero velocity as defined in [3,34,35]. Moreover,
as discussed in [3], the slip length has been found experimentally
by different techniques, and some reported results show that it
can be as small as 1 nm or as big as 2 µm. In particular, Haifeng
et al. [15] used particle tracking technique to obtain sleep lengths
within this range.

Since this inaugural postulation by Navier, many modifications
and extensions have been brought to it. For instance, some
experimental results [8] have suggested that slippage occurs at
the walls only when the wall shear stress is greater than a certain
critical value, τc . Hence for a wall perpendicular to ŷ, say, one of
such extension of Navier slip follows,

Uws = λ[τxy − τc] if τxy ≥ τc,

= 0 otherwise. (2)

Here, τxy is again the wall shear stress, meanwhile τc is the critical
stress, and λ is the slip coefficient. Kaoullas et al. [34] elaborated
more on this connection.

Another extension of Navier slip is the non-linear Navier
slip [10,36]. This slip law says that the wall slip velocity is
proportional to the wall stress raised to a certain power. Because
of that, it is also referred to as power-slip law. The general form of
this slip law is

Uws = k
τ(wall, δ)

m , (3)

where m can be any real positive number, and δ is a characteristic
slip distance describing the region of influence of slip within the
fluid. Parameter δ, can also be defined as the fluid boundary
thickness within which slippage is affected (i.e. distance within
which slip effects are significant). Again, k is the slip coefficient,
whose dimension is derived based on the value attributed tom.

Following the same concept of critical wall stress, Hatzikiri-
akos [8] developed a slip law with two coefficients, k1 and k2 in
the form

Uws = k1Sinh{k2|τxy| − τc} if τxy ≥ τc,

= 0 otherwise. (4)
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