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a b s t r a c t

Wepropose a unified framework to derive thin-layer reducedmodels for some shallow free-surface flows
driven by gravity. It applies to incompressible homogeneous fluids whose momentum evolves according
to Navier–Stokes equations, with stress satisfying a rheology of viscous type (i.e. the standard Newtonian
lawwith a constant viscosity, but also non-Newtonian laws generalized to purely viscous fluids and to vis-
coelastic fluids as well). For a given rheology, we derive various thin-layer reduced models for flows on a
rugous topography slowly varying around an inclined plane. This is achieved thanks to a coherent simplifi-
cation procedure, which is formal but based on a mathematically clear consistency requirement between
scaling assumptions and the approximation errors in the differential equations. The various thin-layer re-
duced models are obtained depending on flow regime assumptions (either fast/inertial or slow/viscous).
As far as we know, it is the first time that the various thin-layer reduced models investigated here are
derived within the same mathematical framework. Furthermore, we obtain new reduced models in the
case of viscoelastic non-Newtonian fluids, which extends Bouchut and Boyaval (2013).

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The flowmodels built with Navier–Stokes equations for viscous
fluids have been simplified in various ways for a long time. This
has resulted in a large number of reduced models, in particular,
numerous thin-layer models for shallow free-surface flows often
obtained by a formal asymptotic analysis [1–4].

Initially, reduced models were looked after because they were
more amenable to analytical computations than fullmodels. For in-
stance, the Stoker and Ritter solutions to the inviscid Saint-Venant
(i.e. shallow-water) equations have allowed one to model dam
breaks in a simple way, with analytical formulas. Nowadays, com-
puter simulations often yield good approximations to full models.
But good simulations of complex full models are expensive (time-
consuming at least), and typically less easily interpreted from the
physical viewpoint. In the case physical parameters of the model
have to be explored, reduced versions of the model may thus still
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be preferred to full models, for instance to discriminate against
various possible rheologies by comparison with experiments, see
e.g. [5,6]. Moreover, in the case where many values of the physical
parameters have to be explored, reducedmodels (computationally
cheaper than fullmodels) often remain the single numerical option
(even for simple toy-models, computational reductions can prove
crucial, see e.g. the case of stochastic parameters in [7]). Reduced
models thus remain very useful. But it is also desirable to com-
pare them with full models, or at least one another (in the case of
varying physical parameters). Now, rigorous error bounds between
various (full or reduced) models are available in simple cases only,
where the models remain of the same kind (see e.g. [7]). The case
of free-surface shallow flow models for fluids driven by gravity is
particularly striking, since various thin-layer reducedmodels have
been proposed (see the numerous references later in this work),
which are of differentmathematical type, depending on various as-
sumptions about the flow regime considered during their deriva-
tion (i.e. depending on solution properties that are not obviously
connected to data, and assumed instead).

The case of free-surface flow models for perfect fluids driven
by gravity (non-necessarily-shallow flows of inviscid fluids) has
been treated recently: a unifying approach to irrotational water-
wave models could be constructed recently [8] and extended to
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new reduced models with vorticity [9]. For shallow free-surface
flows (of non-necessarily perfect fluids), a generic procedure has
also been used recently to derive thin-layer models with various
rheologies [1,4], but it seems to hold only for the flow regimes that
we later term ‘‘slow’’, and it has not been used for all the cases
treated in the present work (viscoelastic fluids for instance).

Our primary goal here is to establish amathematical framework
where various thin-layer reduced models obtained in various flow
regimes (slow or fast), given a fixed possibly viscous rheology, can
be connected one another. Moreover, we treat various rheologies
(Newtonian and non-Newtonian) of viscous (also viscoelastic)
fluids in the various regimes. We believe that we have thereby
unified, for the first time, the derivation of many various thin-
layer reduced models for shallow free-surface gravity flows, for
Newtonian and non-Newtonian (viscous or viscoelastic) fluids in
slow and fast regimes.

Our mathematical simplification procedure is formal. It cannot
certify rigorously that a solution to the reduced model is a good
approximation of a solution to the full model. But it is based
on an intuitive coherence property with a clear mathematical
formulation: the consistency between scaling assumptions and
approximation errors in the equations. Moreover, given one
rheology,we invoke successive assumptions about the flow regime
until the simplification procedure delivers a closed reduced model
that is coherentwith the original fullmodel. In a given flow regime,
for one given rheology, our procedure is thus univoque.

The simplification procedure is inspired by [2,3] where the vis-
cous shallow water equations are derived from the Navier–Stokes
equations for Newtonian (purely viscous) fluids (see Section 3). It
aims at building a consistent approximation to a family of solu-
tions to the initial full model, when the family of solutions defines
an adequate asymptotic regime for shallow free-surface flows of
incompressible viscous fluids driven by gravity on a rugous to-
pography. Consistency is required asymptotically with respect to
a nondimensional parameter ε > 0 parameterizing the solutions.

The asymptotic regime is defined such that only long free-
surface waves are captured when ε → 0 (i.e. only piecewise con-
stants). The asymptotic regime in turn constrains the topographies
that one can consider at the bottom of an incompressible flow of a
homogeneous fluid. Precisely, in the presentwork,we consider only
topographies defined by slow variations around a flat plane inclined
by a constant angle θ with respect to the gravity field, thus asymp-
totically long waves too. Extensions with asymptotically long vari-
ations of θ seem possible [10] but are not considered here, for the
sake of simplicity.

Invoking the Navier–Stokes momentum balance equations (as
opposed to Euler equations), with a viscous dissipative term in the
bulk alongwith friction boundary conditions of Navier-type on the
rugous bottom of the flow, is crucial to the reduction procedure
developed here (comparewith [11,12]). Thismodelling choicemo-
tivates the assumption (H4): ∂zuH = O(1) on the shear rate, a
key step to derive coherent reduced models (see e.g. (33)). It is of
course the responsibility of modellers to check if it makes sense
for application to a real shallow flow (see Remark 1). In any case,
the asymptotics ε → 0 is an idealization. In practice, one should
ask if solutions of the reduced model are close to solutions of the
initial model, i.e. if they can be corrected for ε > 0 small and
give physically-interesting answers: this justifies our coherence re-
quirement.

Finally, one obtains here a synthetic view of various existing
simplifications of the Navier–Stokes equations, for various rheolo-
gies and various flow regimes. Moreover, new reduced models for
fluids with complex rheologies are derived.
• For viscous Newtonian fluids (modelled by the standard

Navier–Stokes equations), we obtain either viscous shallowwa-
ter equations in fast (inertial) flow regimes (as e.g. in [2,3]) or
lubrication equations in slow (viscous) flow regimes (as e.g. in
[13,1,14]), see Section 4.

• For viscous non-Newtonian fluids (nonlinear power-law mod-
els), we obtain either a nonlinear version of the shallow water
equations in fast flow regimes that is apparently new, or non-
linear lubrication equations in slow flow regimes (see [4] and
references therein), see Section 5.

• For viscoelastic non-Newtonian fluids, we obtain either shallow
water equationswith additional stress termswhich extends the
recent work [11] in fast flow regimes, or new lubrication equa-
tions in slow flow regimes (different than those in [15,16]), see
Section 6.

A few remarks are also in order.

• The case of perfect fluids (no internal stresses) is singular. We
recover it here as the inviscid limit of viscous models, provided
friction is small enough at the rugous bottom boundary,
and it yields the same reduced model whatever the explicit
formulation of the viscous terms. One obtains the thin-layer
model of Saint-Venant [17] widely used in hydraulics, also
known as the nonlinear shallow-water equations. A dissipative
term associated with the Navier friction boundary condition
remains. It could have been derived more straightforwardly
without viscosity, like in [12] for viscoelastic fluids with
zero retardation time, but then also less naturally (conditions
tangent to the boundary are not required for perfect fluids).

• The case of viscoplastic Non-Newtonian fluids (i.e. Bingham-
type fluids) occurs as a singular limit of the nonlinear power-
law models. This case is very interesting from the modelling
viewpoint (some fluids are believed to possess a yield-stress,
which suits well for modelling fluid–solid transitions like e.g. in
avalanches). But it is also difficult from the mathematical
viewpoint (the model is undetermined below the yield-stress)
as well as from the physical viewpoint (the yield-stress concept
is still debated [18]).

• In the case of viscoelastic fluids, we improve here the model
derived in [11]. Note that the constitutive equations that we
use here are simple and alike in [11]. (They are linear equations
in the conformation tensor state variable, physically-consistent
from the frame-invariance and from the molecular theories
viewpoint.) However, here, we additionally take into account:
friction at the bottom, an inclination between the constant
gravity field and themain direction of the flow, surface tension,
two-dimensional effects and a purely Newtonian additional
viscosity (equivalently, a non-zero retardation time, from the
viscoelastic rheology viewpoint).

For a physically-inclined review of thin-layer models in many
possible flow regimes, we recommend [14], and the older one [13]
with a focus on stability.

2. Mathematical setting of the problem

We endow the space R3 with a Galilean reference frame using
Cartesian coordinates (ex, ey, ez). We denote by ax (respectively ay,
az) the component in direction ex (resp. ey, ez) of a vector (that is
a rank-1 tensor) a, by axx, axz, . . . the components of higher-rank
tensors, by aH the vector of ‘‘horizontal’’ components (ax, ay), by
(aH)⊥ = (−ay, ax) an orthogonal vector, by ∇Ha the horizontal
gradient (∂xa, ∂ya) of a smooth function a : (x, y) → a(x, y), and
by Dta the material time-derivative ∂ta + (u · ∇)a. We use the
Frobenius norm |a| = tr(aTa)1/2 for tensors.

We consider gravity flows of incompressible homogeneous flu-
ids, which are governed by Navier–Stokes equations (momentum
balance and mass continuity)
Dtu = div(S) + f in D(t),
divu = 0 in D(t), (1)
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