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a b s t r a c t

We have developed a strong-coupling approach based on a uniformly-applied Eulerian description for
both fluid and solid and provided a simple monolithic formulation to compute highly flexible structures
interacting with surrounding fluid flows. Using a fast-tracking method and a fast solver for the modified
pressure equation with variable density, we keep the same low computational cost as in the uniform
density case studiedpreviously. Thenewalgorithm is first validatedby the simulation of the self-sustained
oscillation of a flexible plate. Then, it is applied to study the effect from density ratio on a flexible
plate flapping with incoming flow. The simulation shows strong effect of density ratio on the pattern
of fluid–structure interaction and the propulsion performance through the change in mass ratio and
frequency ratio.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Birds and insects have survived by taking the advantage of
flapping flexible wings for high energy efficiency and incredible
maneuverability, when fixed rigid wings conventionally used
for airplanes fail to meet the need at the same low Reynolds
number. The flapping-wing mechanism from the nature has
inspired generations of aerial vehicle designs from ancient flight
machines tomodernunmanned aerial vehicles. Especially,with the
recent demand of micro air vehicles (MAVs), flapping-wing design
attracts attention by many desirable characteristics (i.e. efficiency,
maneuverability, hovering-capability) at low Reynolds number
regime [1].

Starting with the pioneer work by Knoller [2] and Betz [3] in
thrust generation by a plunging airfoil, numerous research in ex-
periments and numerical simulation has been done to understand
the propulsion by plunging andpitching foils andhas been summa-
rized in various places [4–7]. Because of extra complexity brought
in by wing flexibility, the majority of earlier works focused only
on rigid wings [4,8–10] or prescribed deformable wings [11,12].
However, recently, there were increasing interests and number of
works in truly flexible wings with fully coupled fluid–structure in-
teraction in both experiments and numerical simulation [7,13,14].

∗ Corresponding author.
E-mail address:mjwei@nmsu.edu (M. Wei).

To simulation fluid–structure interaction, the fluid and solid are
typically solved by separate equations and algorithms, and they
are then coupled at the interface through boundary conditions.
There have been many studies for different applications and using
different numerical algorithms. Donea et al. [15] applied Arbitrary
Lagrangian–Eulerian (ALE) finite element method to solve the
fluid and study fluid–structure systems under transient dynamic
loading. To understand the flexibility effect of a flapping foil,
Zhu [16] used boundary element method to solve the fluid and
coupled it with a two-dimensional thin-plate structural model by
iterations. Luo et al. [17], in their study of the vocal fold vibration in
human phonation, used immersed boundary method to solve the
incompressible fluid equation with moving boundary and coupled
with a linear viscoelastic solid equation for interaction. Tian
et al. [18] applied a similar approach to study the aerodynamics
of elastic insect wings. All the above approaches require accurate
and explicit representation of boundary conditions (e.g. location,
velocity, force) at the fluid–solid interface which link the fluid and
solid solvers and play the key role in the convergency between
these two solvers. In fact, the convergency is not guaranteed in
some cases, and some works resorted to choose weak coupling
(i.e. without any interaction) to avoid the convergency problem
and save computational time.

In our study, we used a strong-coupling approach to simulate
a highly flexible wing interacting with surrounding fluid flow in a
globally Eulerian framework for both fluid and solid, which avoids
entirely the explicit representation and matching of boundary
conditions at fluid–solid interface and the associate problem in
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the convergency of two separate solvers. The idea has been based
on an immersed boundary approach solving a combined Eulerian
fluid–solid equation proposed independently by Zhao et al. [19]
(for convenience, denoted later as ZFM) and by Boffi et al. [20]. ZFM
extended the standard immersed boundary method by Peskin [21]
to work on both membrane and non-membrane structures. The
force-projection method developed in ZFM is to treat the solid
body force and surface force in a combined manner despite the
difference in singularity properties, which distinguishes itself from
the more traditional approach adopted by Griffith and Luo [22].
To control the flapping trajectory, Yang et al. [14] later modified
ZFM algorithm to include control cells (denoted as YWZ). In both
ZFM and YWZ formulations, they made a strong assumption of
applying the same density for both solid and fluid. This assumption
largely simplified the derivation, however, it also made impossible
to study the effect from density ratio which was pointed out by
Ishihara et al. [13] as one of the basic similarity parameters in
flapping flight. In this paper, based on YWZ formulation,we further
extend the algorithm to handle arbitrary density ratio. A cell-
tracking method and an interface density smoothing approach are
introduced to dynamically define the density field on Cartesian
mesh. Then, the variation of density is included by modifying the
original pressure Poisson equation with a variable density ratio
coefficient and the momentum equation with variable density for
different domain regions. The new approach allows us to study the
propulsion features and structure responses by flexible wings with
different densities.

For the rest of the paper, the detail algorithm is described in
Section 2, the numerical simulation results and discussion are in
Section 3, and the final conclusion is presented in Section 4.

2. Numerical algorithm

For the completeness of the paper, some key ideas from ZFM
and YWZ are briefly revisited and included in this session. (For
clarity, we use ‘‘∗’’ to denote dimensional variables in this paper;
the variables without ‘‘∗’’ are non-dimensionalized accordingly by
the chord length L∗, incoming velocity U∗, fluid density ρ∗

f , and
fluid viscosity µ∗

f .)

2.1. Governing equations

Compared to the Navier–Stokes equation for incompressible
flow,

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p +
1
Ref

∇
2u,

(1)

where the Reynolds number for fluid is Ref = ρ∗

f U
∗L∗/µ∗

f , the
momentum equation for viscoelastic solid typically has a different
form:

ρs
Du
Dt

= ∇ · σν + ∇ · σe, (2)

where ρs is solid density, σν is viscous stress tensor and σe is
elastic stress tensor. When the solid is considered incompressible,
σe can be decoupled in a way similar to the derivation of an
incompressible fluid:

σe = −pI + τelas, (3)

where p is the pressure to enforce the incompressibility and τelas is
the deviatoric elastic stress tensor. When a simple nonlinear neo-
Hookean model is considered, we have

τelas = µs(A · AT
− I), (4)

Fig. 1. The sketch of mesh configuration for a solid plate in fluid flow: Cartesian
mesh with thin lines is the global Eulerian mesh for both fluid and solid; triangles
with thick lines are the local Lagrangianmesh for solid (Ωs); dark triangles are solid
control cells (Ωc ).

where the solid shear modulus µs = µ∗
s /ρ

∗

f (U
∗)2. When

the same density and viscosity are assumed for solid and fluid
(as in ZFM [19]), the above solid momentum equation (2) can
then be formulated in Eulerian framework in a form resembling
Navier–Stokes equation for fluid:

∂u
∂t

+ u · ∇u = −∇p +
1
Ref

∇
2u + ∇ · τelas. (5)

At the fluid–solid interface, no-slip condition and force balance are
enforced by:

[u]|Γ = 0,
[(−pI + µf (∇u + ∇uT )) · n]|Γ = τelas · n,

(6)

where [q]|Γ denotes the jump across the interface Γ , and n is the
unit normal vector [19].

With the similarity between (1) and (5), the fluid and solid
equations along with the boundary condition at the interface (6)
can be combined to one single equation for both fluid and solid,

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p +
1
Ref

∇
2u + ∇ · (χsτelas),

(7)

where the characteristic function χs is defined by

χs =


1 in Ωs
0 otherwise (8)

to embed elasticity only in solid area Ωs (Fig. 1). The solid force
term∇ ·(χsτelas) is equivalent to the combination of the body force
B on Ωs and the surface force F on Γ :

B = χs∇ · τelas,

F = −


Γ

δ(x − xΓ (ε, t))τelas · ndε,
(9)

where δ(x) is Dirac delta. Zhao [23] showed that the singular
surface force F enforces the force balance in (6) at the interface. It is
worth noting that the hydrodynamic force on solid boundary does
not appear explicitly in fluid–solid equation (7) since it becomes
an internal force in the combined formulation. By avoiding the
computation for values explicitly at the interface, the unified
formulation for solid and fluid reduces thenumerical errors and the
risk of instability, and themonolithic formulation largely increases
the computational efficiency as well.

However, the above formulation lacks themechanism to define
themotion of certain components for desirablemoving trajectories
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