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a b s t r a c t

Errors that stem from a practical analytical approximation La to the local flow component L in the Green
function associated with steady linear potential flow around a ship hull are considered. Although the
approximation La is not very accurate, the flow potentials evaluated via the exact local flow component
L or the approximation La for Froude numbers F = 0.15, 0.3 and 0.5 cannot be distinguished, except at
F = 0.15 forwhich relatively small differences can be observed.Moreover, the sinkage, the trim angle and
the wave drag predicted by the Neumann–Michell (NM) theory, with the local flow potential evaluated
using L or La , are in very close agreement. Despite its remarkably simplicity, the analytical approximation
La can then be used to compute the local flow component L in the Green function, in the entire flow region,
within the framework of the NM linear potential flow theory and the related Hogner approximation. The
practical analytical approximation La is far more practical than the basic integral representation of L, and
is an important element of the NM theory. Indeed, the analytical approximation La , and other features
of the NM theory, make it possible to compute the flow around a steadily advancing ship hull in a highly
efficient way, as required for routine practical applications to design and hull-form optimization.

© 2015 Published by Elsevier Masson SAS.

1. Introduction

Most ships are streamlined slender bodies that operate at high
Reynolds numbers 109 < Re. Viscous effects are then confined
within very thin boundary layers, and potential-flow theory pro-
vides a realistic framework for computing the flow around a ship
hull that advances at constant speed along a straight path in calm
water. Indeed, potential-flow theory is adequate, as well as prac-
tical and useful, for applications to ship design (notably early de-
sign) and especially hull-form optimization. Potential flow around
a (steadily advancing) ship hull is then considered here.

In particular, the Neumann–Michell (NM) theory and the
related Hogner approximation considered in [1–3] are of main in-
terest here. This practical theory is shown in [2–7] to yield predic-
tions of the sinkage, trim and drag experienced by a ship, as well
as predictions of the wave profile along a ship hull and of far-field
waves along a longitudinal cut behind a ship, that are in satisfac-
tory agreement with experimental measurements for a range of
shipmodels and Froude numbers. The NM theory is then useful for
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ship design, and is especiallywell suited for hull-formoptimization
as amply demonstrated in [8–16].

The NM theory is based on a Green function that satisfies
the radiation condition and the classical Kelvin–Michell linearized
boundary condition at the free surface. This Green function is
then a major element of the NM theory, and of the related Neu-
mann–Kelvin (NK) theory given in [17,18] and further considered
in a broad literature, reviewed in [2]. The Green function used in
the NK and NM theories is considered in an extensive literature,
reviewed in [2,19]. The Green function G(x̃, x) is given by the sum
of three basic components: (i) the fundamental free-space Green
function −1/r where r denotes the distance between the source
point x ≡ (x, y, z) and the field point x̃ ≡ (x̃, ỹ, z̃) in the Green
function, (ii) a wave component GW that consists of a linear super-
position of elementary planewaves and is given by a single Fourier
integral with continuous integrand, and (iii) a non-oscillatory lo-
cal flow component GL that is defined by a double Fourier integral
with singular integrand. This impractical singular double Fourier
integral can be transformed into a single integral with integrand
expressed in terms of the complex exponential integral function
E1(·).

The basic decomposition of the Green function G into a wave
component GW and a local flow component −1/r + GL is not
unique. Three alternative decompositions are given in [20], and

http://dx.doi.org/10.1016/j.euromechflu.2015.09.009
0997-7546/© 2015 Published by Elsevier Masson SAS.

http://dx.doi.org/10.1016/j.euromechflu.2015.09.009
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechflu.2015.09.009&domain=pdf
mailto:noblfranc@gmail.com
http://dx.doi.org/10.1016/j.euromechflu.2015.09.009


H. Wu et al. / European Journal of Mechanics B/Fluids 55 (2016) 162–169 163

the decomposition recommended in that study is used here. Com-
plementary near-field and far-field asymptotic approximations of
the local flow component are given in [21–24]. Practical numeri-
cal approximations based on Chebyshev polynomials [24] or table
interpolation [25–27] in complementary contiguous regions have
also been given. Simple analytical approximations to the local flow
component GL are given for the two special cases ỹ − y = 0 or
z̃ + z = 0 that correspond to flows due to thin ships [28] or to air-
cushion-vehicles or planing boats [29]. These two special analytical
approximations are extended in [19] to the general case

− ∞ < x̃ − x < ∞ − ∞ < ỹ − y < ∞ − ∞ < z̃ + z ≤ 0.
(1)

The analytical approximation to the local flow component GL

given in [19] is valid within the entire lower half space (1) as just
noted, and is shown in [19] to provide a practical way of evaluating
the flow created by a distribution of sources over an arbitrary
ship hull surface. In particular, the method considered in [19]
to numerically evaluate the flow due to a surface distribution of
sources only involves elementary continuous functions (algebraic,
exponential and trigonometric) of real arguments. This method
is used in [2–7]. The satisfactory overall agreement between
numerical predictions and experimental measurements reported
in these studies, as well as the comparison between the local flow
componentGL evaluated via the integral representation ofGL or the
related analytical approximation GL

a given in [19], suggest that the
simple approximation GL

a is sufficiently accurate for most practical
applications. Nevertheless, a more precise estimate of the errors
due to the analytical approximation GL

a is highly desirable. This
study of numerical errors due to the approximation GL

≈ GL
a is

considered here.

2. The Green function

Potential flow around a ship hull of length Ls that advances at
constant speed Vs along a straight path in calmwater of effectively
infinite depth and lateral extent is considered. The flow is observed
from a moving system of Cartesian coordinates X ≡ (X, Y , Z)
attached to the ship and thus appears steady. The X axis is chosen
along the path of the ship and points toward the ship bow. The
Z axis is vertical and points upward, with the undisturbed free
surface taken as the plane Z = 0. The flow velocity in this system
of coordinates is (U − Vs, V ,W ) where U ≡ (U, V ,W ) denotes
the disturbance flow velocity due to the ship. A reference length
Lref , commonly chosen as the ship length Ls or as V 2

s /g where g
is the acceleration of gravity, is used to define nondimensional
coordinates

x ≡ (x, y, z) ≡ (X, Y , Z)/Lref . (2)

The Froude number F is defined as

F = Vs/

gLref . (3)

The choice Lref = V 2
s /g yields F = 1.

The classical theoretical framework associated with a Green
function G(x̃, x) that satisfies the usual Kelvin–Michell linearized
free-surface boundary condition for steady flows and the radiation
condition is adopted. This Green function represents the velocity
potential of the flow created at a flow-field point x̃ ≡ (x̃, ỹ, z̃ ≤ 0)
by a unit source at a point x ≡ (x, y, z ≤ 0), as well known. The
(nondimensional) distances between the flow-field point x̃ and the
source point x or its mirror image x1 ≡ (x, y,−z) with respect to
the mean free-surface plane z = 0 are given by

r ≡


(x̃ − x)2 + (ỹ − y)2 + (z̃ − z)2 (4a)

r1 ≡


(x̃ − x)2 + (ỹ − y)2 + (z̃ + z)2. (4b)

The nondimensional coordinates (a, b, c) and the related distance
d are defined as

a ≡

x̃ − x


F 2
b ≡

ỹ − y


F 2
c ≡

−(z̃ + z)
F 2

(5a)

d ≡


a2 + b2 + c2 ≡ r1/F 2. (5b)

One has 0 ≤ a, 0 ≤ b, 0 ≤ c and 0 ≤ d.
The Green function G can be expressed as

4πG = −1/r + GL
+ GW (6)

where −1/r is the fundamental free-space Green function, and GL

and GW represent a local flow component and a wave component
that account for free-surface effects. The basic decomposition (6)
into waves and a local flow is not unique, as already noted. The
decomposition recommended in [20] is adopted.

The wave component GW in this decomposition is given by the
Fourier superposition of elementary waves

GW
= H(x − x̃)

4
F 2

Im
 k∞

−k∞
dkΛ E with

E ≡ e(1+k2)(z̃+z)/F2+i
√

1+k2 [x̃−x+k (ỹ−y)]/F2 (7)
whereH(·) is the usual Heaviside unit-step function, and Immeans
imaginary part. Moreover, the finite limits of integration ±k∞

and the ‘filter function’ Λ remove unrealistic short waves that
correspond to k∞ < |k|, as is necessary for practical purposes
[30,31]. The contribution of the wave component GW to the flow
potential can be evaluated in a practical manner via the classical
Fourier–Kochin approach, as considered in [2,3], and this approach
is used here. The local flow component GL in expression (6) for the
Green function is now considered.

3. Local flow in the Green function

The local flow component GL in (6) is expressed in [20] as

GL
= 1/r1 − 2 L/F 2. (8)

Here, L is defined by the basic integral representation

L ≡ 1 + ψ −
1
π

 1

−1
dt Im[eME1(M)+ ln(M)]

with M ≡ (bt − c

1 − t2 + ia)


1 − t2. (9)

Moreover, E1(·) stands for the complex exponential integral
function, and ψ is defined as

ψ ≡ c/(d + a). (10)
Numerical evaluation of the integral (9) is overly time consuming
for practical applications.

The more practical approach based on the simple analytical
approximation

L ≈ La ≡ 1/(1 + d)+ ψ/(1 + d)2

+
0.2 d

(1 + d)5


A +

B c
√
b2 + c2

 
1 −

a
d


−

Ca
d


(11a)

with

A ≡ 4 + 6 d + 26 d2 (11b)

B ≡ 1 + 39 d − 24 d2 (11c)

C ≡ (4 + 3 d + 5 d2)/(1 + d) (11d)
given in [19] is then considered here. The analytical approximation
La to the local flow component L is defined within the entire flow
region 0 ≤ d, and moreover only involves ordinary functions
of real arguments. This approximation evidently is considerably
simpler than the integral representation (9).
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