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a b s t r a c t

The incompressible Navier–Stokes equations have an exact similarity solution for the flow over an infinite
rotating disk giving a laminar boundary layer of constant thickness, also known as the von Kármán
flow. It is well known now that there is an absolute instability of the boundary layer which is linked
to transition to turbulence, but convective routes are also observed. It is these convective modes that
we focus on here. A comparison of three different approaches to investigate the convective, so called
Type-I, stationary crossflow instability is presented here. The three approaches consist of local linear
stability analysis, direct numerical simulations (DNS) and experiments. The ‘shooting method’ was used
to compute the local linear stability whereas linear DNS was performed using a spectral-element method
for a full annulus of the disk, a quarter and 1/32 of an annulus, each with one roughness element in the
computational domain. These correspond to simulating one, four and 32 roughness elements on the full
disk surface and in addition a case with randomly-distributed roughnesses was simulated on the full
disk. Two different experimental configurations were used for the comparison: i) a clean-disk condition,
i.e. unexcited boundary-layer flow; and ii) a rough-disk condition, where 32 roughness elements were
placed on the disk surface to excite the Type-I stationary vortices. Comparisons between theory, DNS and
experiments with respect to the structure of the stationary vortices are made. The results show excellent
agreement between local linear stability analysis and both DNS and experiments for a fixed azimuthal
wavenumber (32 roughnesses). This agreement clearly shows that the three approaches capture the
same underlying physics of the setup, and lead to an accurate description of the flow. It also verifies the
numerical simulations and shows the robustness of experimental measurements of the flow case. The
effects of the azimuthal domain size in the DNS and superposition of multiple azimuthal wavenumbers
in the DNS and experiments are discussed.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The rotating-disk flow has been of particular interest over the
last century due to von Kármán’s successful derivation of an exact
similarity solution of the incompressible Navier–Stokes equations
in cylindrical coordinates [1]. The flow belongs to a family of the
so-called ‘BEK boundary layers’, including the Bödewadt, Ekman
and von Kármán rotating boundary layers. These are characterized
by a Rossby number (Ro), the definition of which is given in e.g.
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Ref. [2]. For the von Kármán boundary layer the Rossby number
is Ro = −1. Within the flow a thin three-dimensional boundary
layer is generated by the rotation of the disk, and the laminar
similarity solution is described by the three velocity components:
U, V and W , in the radial, azimuthal and wall-normal directions,
respectively, as depicted in Fig. 1. In this global picture, U and
V increase linearly with radius (r) whereas W is constant in r ,
indicating that the boundary-layer thickness does not change as
a function of the radial position. Using the viscous length scale
L∗

= (ν∗/Ω∗)1/2, where ν∗ is the kinematic viscosity, Ω∗ the
angular velocity and superscript ∗ denotes a dimensional value,
the Reynolds number is the nondimensional radius; R = r =

r∗/L∗, where r∗ is the dimensional local radius. In Fig. 1 it is
also possible to see that the radial velocity profile includes an
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Fig. 1. The laminar velocity profiles of the similarity solution for the flow over
a rotating disk. U is the radial velocity component, V is the azimuthal velocity
component and the vertical greyscale lines indicate the amplitude of the wall-
normal velocity component W (white denotes zero velocity). The cylindrical
coordinates are given by r, θ and z, and the rotation rate is defined by Ω .

inflection point, which according to the Rayleigh stability criterion
causes an inviscid instability. The existence of the exact similarity
solution for the laminar flow led to a variety of possible approaches
for analysing the flow further, creating a canonical model for
other similar three-dimensional boundary layers, such as the flow
over a swept wing. However, it is not only useful as a simple
model of three-dimensional boundary layers but also to investigate
its direct applications to rotating-flow configurations, such as
turbomachinery, computer storage devices and chemical vapour
deposition.

More than half a century ago experimentalists first found vortex
structures in the rotating-disk boundary layer spiralling outwards
with radius (e.g. Refs. [3–6]). These vortices are stationary within
the rotating reference frame and correspond well to the convec-
tively unstable stationary disturbances predicted by local linear
stability analysis when using the viscous 6th-order perturbation
equations (e.g. Refs. [7,8]). The vortices themselves are excited by
small roughnesses on the disk surface,which are virtually unavoid-
able in experiments. Two different stationary modes exist that are
unstable for certain parameter sets: the inviscid Type-I mode, so-
called crossflow instability; and the viscous Type-II mode. The lat-
ter is attributed to the centrifugal and Coriolis forces, and has a
higher critical Reynolds numbers than Type-I for stationary dis-
turbances. Travelling Type-I and Type-II modes are also unstable
over certain parameter ranges. Both stationary and travelling dis-
turbances have been investigated by local linear stability analysis
(e.g. Refs. [4,7,9–13]). Furthermore, there is a third mode, Type-III,
which is a damped upstream-travelling mode that coalesces with
the Type-I mode at higher Reynolds numbers. This coalescence re-
sults in the rotating-disk boundary-layer flowbecoming locally ab-
solutely unstable for some travelling disturbances above R > 507
[12,14]. Theoretical studies have been extended to take into ac-
count the flow development in the radial direction through global
stability analysis. Pier [15] showed that the rotating-disk flow be-
comes nonlinearly globally unstable at the onset of local absolute
instability.

This paper focuses on the Type-I crossflow stationary vortices
and, even though there has been much research done both theo-
retically and experimentally in connection to these, only one set of
direct numerical simulations (DNS) can be found in the literature.
Davies and Carpenter [16] validated their linear velocity–vorticity
discretization scheme by simulating Type-I and Type-II travelling
waves excited by a radially-localized time-periodic wall displace-
ment. A comparison with local theory with a stationary distur-
bance of azimuthal wavenumber 32 was also performed. They
found that the locally-defined radial wavenumbers and growth
rates from quasi-parallel linear stability theory were similar to the
global linear DNS. This is also in accordance with the local–global
investigation by Malik and Balakumar [17].

The purpose of this study is to compare local linear stability
analysis with numerical simulations and experiments, and to es-
tablish how well they correspond to each other. In Section 2, tech-
nical descriptions of the theoretical, numerical and experimental
methods are described. Linear simulations are presented to eluci-
date the global behaviour for disturbances triggered by regular and
random distributed roughness elements, and results from two ex-
periments will be presented, with and without deterministic sur-
face roughness elements on the disk surface. In Section 3, the re-
sults from the comparison of the three approaches are given,which
are then summarized in Section 4.

2. Description of the methods

2.1. Local linear theory

The description of the rotating-disk flow originates from the
Navier–Stokes equations formulated in a cylindrical-coordinate
system in the rotating frame of reference. The similarity equations
for the mean flow, as formulated by von Kármán [1], were here
solved numerically via a shooting method. Also, the perturbation
equations that govern the linear local stability of the rotating-disk
flow have been derived and solved. For the perturbation equations,
the parallel-flow approximation is used to simplify the system
of partial differential equations (PDE) to a sixth-order system of
ordinary differential equations (ODE). This simplification means
that spatial-development of the flow is neglected and only the
local stability behaviour can be determined from this approach.
It is possible to reduce the set of equations further by neglecting
the Coriolis and streamline-curvature terms, which leads to the
familiar Orr–Sommerfeld equation. However, in this context only
the sixth-order system of ODE will be considered in line with the
work of Lingwood [8], including rotation and curvature.

The ‘shooting method’ was used to investigate the local
linear stability of this flow. This method includes a coordinate
transformation before the normal-mode approximation is applied
following the path of Lingwood [8]. For a stationary mode (in the
rotating reference frame) considered here, the temporal frequency
is zero (ωr = 0) and the disturbance is assumed to have the shape
φ(r, θ, z) = ψ(z) exp[i(αr + βθ)] (1)
for the disturbance vector φ = (u, v, w, p)T and the amplitude
vector ψ = (û, v̂, ŵ, p̂)T , where the hat symbol denotes the
spectral representation of the perturbation fields, and α and β are
the radial and azimuthal wavenumber, respectively. The neutral
stability curves for such a disturbance are shown in Fig. 2. The
curves show the boundaries in terms of αr , β and the angle

ε = tan−1(β̄/αr), (2)
where β̄ = β/r , along which αi = 0 (β is real by definition
and ωi = 0 as a spatial analysis is performed). Within the curves
αi is negative and the disturbances are growing in the positive r-
direction. Two branches are marked corresponding to the Type-I
and II disturbances. For the local theory data shown in the result
section of this paper, we have chosen to focus on the Type-I
stationary vortices because they have higher spatial growth rates
than Type-II. This difference is made clear in Fig. 3 where −αi of
Type-I, II and III stationary disturbances are plotted for β = 32.

The Type-III disturbance is an upstream mode, i.e. the group
velocity is negative, that never becomes unstable for the stationary
waves for these R and thus is not seen in the neutral curves in Fig. 2.
Due to the difference in group velocity, the downstream modes,
Type-I and II, are unstable for αi < 0 in contrast to Type-III for
which instability occurs for αi > 0. The local theory data have also
previously been comparedwith the results from parabolic stability
equations (PSE), see [17,18], where the global PSE growth-rate data
were found to be slightly higher than the local theory data for Type-
I and II disturbances.
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