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a b s t r a c t

The instabilities of the sidewall boundary layer in a rapidly rotating split cylinder are studied numerically.
Axisymmetric results are studied extensively where a variety of different states are found. In the basic
state, the interior flow is in solid-body rotationwith themean rotation rate of the two cylinder halves. The
sidewall boundary layer of the basic state is compared with theoretical results. For sufficiently fast mean
rotation and large enough differential rotation between the two halves, instabilities in the boundary layer
appear. These instabilities result in periodic and quasi-periodic states in different parameter regimes. The
instabilities are localized in the boundary layer, but they may transport shear into the interior if their
associated frequencies are less than twice the mean rotation frequency, and then only in the form of
inertial wave beams along directions determined by their frequencies.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The structure of the sidewall boundary layer in a rapidly rotat-
ing cylinder subjected to some differential rotation has attracted
much attention because of both its practical and fundamental im-
portance. Stewartson [1] first showed that when the sidewall ro-
tates at a rate slightly faster than the two endwalls, the sidewall
boundary layer has a sandwich structure consisting of an inner
layer whose thickness scales as Re−1/3 (where Re is the rotation
Reynolds number based on the mean angular velocity of the cylin-
der, its radius and the kinematic viscosity of the fluid) and an outer
layer with a thickness that scales as Re−1/4. The Re−1/4 layer is
where the perturbation to the azimuthal velocity is adjusted and
the inner Re−1/3 layer is needed to adjust the secondarymeridional
flow. The boundary layers on the endwalls are of Ekman type, and
they scale as Re−1/2.

Hocking [2] considered another differentially rotating cylinder
flow consisting of a split cylinder with one half rotating slightly
faster than the other. His analysis considered the case of an
infinitely long cylinder in which case the meridional flow in the
sidewall layer due to the flows being pumped out of the Ekman
layers at the ends was neglected. The finite split cylinder problem,
in which endwall effects are present, was later addressed by van
Heijst [3] using boundary layer analysis. His results showed that
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the quasi-geostrophic (almost independent of the axial direction)
Re−1/4 layer is unable to provide the matching between the
azimuthal interior velocity and the discontinuous velocity of the
sidewall, that the non-geostrophic Re−1/3 layer is needed to match
the discontinuous sidewall velocity but is unable to do so on its
own, but that the combination of the two layers does provide the
required matching.

The theoretical boundary layer analysis proceeds in the limit of
very fast rotation (large Re) and very small differential rotation. The
small differential rotation allows one to neglect the inertia terms
and leads to linear governing equations, and the large Re leads to
boundary layers whose thickness is much smaller than the cylin-
der radius, allowing one to neglect curvature terms in the sidewall
boundary layer analysis. Of course, this raises the question as to
what happens as the differential rotation is increased; how is the
boundary layer structure altered given that the increased merid-
ional flow driven by the Ekman layers may lead to a fundamental
change in the boundary layer structure (e.g., see [4]), and at some
finite strength of the differential rotation the nonlinear terms will
become non-negligible and instabilities can be expected to ensue.
Hart and Kittelman [5] provide some insights from flow visualiza-
tion experiments in the case where the rapidly rotating cylinder
has the top endwall rotating faster than the rest of the cylinder.
Lopez [6] simulated this and other related flows solving the ax-
isymmetric Navier–Stokes equations, and Lopez and Marques [7]
investigated the three-dimensional instabilities of that flow. The
boundary layer analysis [3] shows that the relative roles of the
Re−1/4 and Re−1/3 layers are very different when the split in the
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Fig. 1. Schematic of the flow system. The inset shows azimuthal vorticity contours
of an axisymmetric time-periodic state at Re = 105 , Ro = 0.110 and γ = 1.

cylinder is at mid-height compared to when it is at one of the cor-
ners where an endwall meets the sidewall. This difference raises
the question as to how does the nonlinear behavior differ when
the split is at half-height.

For these rapidly rotating split cylinder problems, in the ab-
sence of instabilities, the interior flow is in solid-body rotationwith
the mean rotation rate of the two cylinder halves. For fast enough
mean rotation, disturbances from instabilities can only penetrate
into the interior if their frequencies are less than twice the mean
rotation frequency, and then only in the form of inertial wave
beams along directions determined by their frequencies. In the in-
viscid limit, this is governed by the inertial wave dispersion rela-
tion [8], but for large but finite Re and finite differential rotation,
viscous and nonlinear effects come into play, as well as mean-flow
deformations leading to bulk flows that have non-constant angular
speed. Furthermore, how these inertial wave beams feed back on
the boundary layer and corner instabilities is not obvious, and we
also try to address this.

2. Governing equations and numerical methods

Consider the flow in a circular cylinder of radius a and height h,
completely filled with a fluid of kinematic viscosity ν. The cylinder
is split in two, the top half rotates with angular speedΩ + ω and
the bottomhalfwith angular speedΩ−ω. Fig. 1 shows a schematic
of the flow.

The Navier–Stokes equations, non-dimensionalized using a as
the length scale and 1/Ω as the time scale, are

(∂t + u · ∇)u = −∇p + 1/Re∇2u, ∇ · u = 0, (1)

where u = (u, v, w) is the velocity field in polar coordinates
(r, θ, z) ∈ [0, 1] × [0, 2π ] × [−γ /2, γ /2], and p is the kinematic
pressure. There are three governing parameters:

Reynolds number Re = Ωa2/ν,
Rossby number Ro = ω/Ω,

aspect ratio γ = a/h.
(2)

The boundary conditions are no-slip:

z = 0.5γ : (u, v, w) = (0, r(1 + Ro), 0),
z = −0.5γ : (u, v, w) = (0, r(1 − Ro), 0),
r = 1, z ∈ (0, 0.5γ ) : (u, v, w) = (0, 1 + Ro, 0),
r = 1, z ∈ (0,−0.5γ ) : (u, v, w) = (0, 1 − Ro, 0).

(3)

Fig. 2. Profiles of the regularized sidewall boundary condition for the azimuthal
velocity, v(z) = 1 + Ro tanh(ϵz), with Ro = 0.26 and ϵ as indicated. The ϵ = 50
case shows open symbols at the Chebyshev collocation points corresponding to
nz = 100.

In this present study, we only consider axisymmetric flows.
The governing equations (1) have been solved using a second-
order time-splittingmethod, with space discretized via Chebyshev
collocation in r and z:

u(r, z, t) =

2nr+1
n=0

nz
m=0

ûmn(t)Ξn(r)Ξm(z), (4)

where Ξn is the nth Chebyshev polynomial. The spectral solver is
based on that described in Ref. [9] and it has been used extensively
in a wide variety of enclosed cylinder flows. In the present paper
where we focus on flows with Re = 105, we have typically used
nr = 100 and nz = 100 and δt = 4×10−4. This provides sufficient
spacial resolution to have between 6 and 9 collocation points in the
bottom and top boundary layers (the two are not symmetric due to
the differential rotation Ro), and δt is small enough to capture the
dynamics.

The jump discontinuity in the sidewall boundary condition for
the azimuthal velocity is problematic when solving the system
using a spectral method as it leads to Gibb’s phenomenon. This
issue can be remedied by regularizing the boundary condition by
smoothing out the jump over a small distance, in essentially the
same way as the corner discontinuity between a sidewall and a
differentially rotating endwall is regularized [10]. Specifically, we
replace the boundary condition for the azimuthal velocity with

v(r = 1, z) = 1 + Ro tanh(ϵz), (5)

where ϵ governs the distance over which the jump is smoothed
out. Fig. 2 shows the azimuthal velocity profile, η, at the sidewall
for Ro = 0.26 and various values of ϵ. In the ϵ = 50 case, the
open symbols are at the Chebyshev collocation points correspond-
ing to nz = 100. Fig. 3 shows the azimuthal vorticity for Re = 104,
Ro = 0.26, γ = 1 with ϵ = 50 and ϵ = 200. There is little differ-
ence in selecting ϵ > 50, and for the rest of the results presented
here, we fix ϵ = 50.

3. Basic state

The interior flow of the basic state (BS) in a finite rotating
cylinder split into two differentially rotating parts is essentially
in solid-body rotation with approximately the mean rotation rate
of the two cylinder halves. The top and bottom endwall boundary
layers are Ekman like, and the only meridional flow in the interior
is a weak axial flow from the slower (bottom) to the faster (top)
rotating endwall. The interesting flow structure is associated with
the sidewall boundary layer. Van Heijst [3] used boundary layer
analysis to show that the main effect of the two endwalls is the
order Re−1/2 transport that appears in the sidewall Stewartson
layer. He described how the combination of the Re−1/4 and Re−1/3

boundary layers matches the boundary conditions. For the case we
study here, with the discontinuity in the middle of the cylinder,
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