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a b s t r a c t

Dissolution of underground cavities by ground water (or solutions) may cause environmental problems
and geological hazards. Efficient modeling and numerical solving of such phenomena are critical for risk
analysis. To solve the cavity dissolution problems, we propose to use a porous medium based local non-
equilibrium diffuse interface method (DIM) which does not need to track the dissolution fronts explicitly
as the sharp front methods (such as ALE). To reduce the grid blocks when using the DIM method, an
adaptive mesh refinement (AMR) method is used to have higher resolutions following the moving fronts.
An efficient fully implicit scheme is used by taking care of the velocities across the gridblock interfaces
on the AMR grid. Numerical examples of salt dissolution under different flow conditions were performed
to validate the modeling and numerical solving. Core-scale and reservoir-scale cases were carried out to
study themass transport and the evolution of the profiles of the dissolution fronts. Gravity-driven physical
instabilities are found to bemore strong in the infinite channelwith upper and lower planes than in the 3D
tube configuration under the same condition. The implementations with the AMRmethod also showed a
very good computational efficiency, while obtaining good agreement with the finest-grid solutions.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Cavity dissolution problems are very common in fluid–solid
systems, for instance, karstification [1], mining [2], CO2 storage
[3,4], rock weathering by flowing groundwater or other chemi-
cal solutions [5,6], etc. In these cases, the growth of underground
cavities may cause geological disasters and environmental prob-
lems [7–9]; thus, accurate description and prediction of such phe-
nomena are crucial for risk analysis. In this paper, we focus on the
study of the evolution of the fluid–solid fronts caused by dissolu-
tion, e.g., water flushing the halite deposit. Two types of cavities
exist in the nature: (i) a region within a porous medium in which
the soluble material has been dissolved, leaving a cavity formed
of insoluble material with a large porosity; (ii) a true void cavern
space created by the dissolving liquid into a purely soluble solid
domain.

∗ Corresponding author. Tel.: +33 344556182.
E-mail address: Farid.Laouafa@ineris.fr (F. Laouafa).

The type (i) cavity dissolutionmay bemodeled by amacro-scale
porous medium theory involving averaged equations and effective
properties. Porousmedia dissolutionmodels have been introduced
and used widely on a heuristic basis. A thorough derivation may
be achieved by using mathematical upscaling techniques. For
example, volume averaging in [10–12] leads to different models,
e.g., local equilibrium models, and local non-equilibrium models.
In the latter models, the true dissolution front thickness, i.e., the
region where porosity varies due to dissolution, is controlled
mainly by a mass exchange term [13–16].

The type (ii) cavity dissolutionmay bemodeled using either the
sharp front methods [17–19] or the cellular automaton methods
[20,21] and the diffuse interface methods[22]. In typical sharp
front methods, like for instance those based on the Arbitrary
Lagrangian–Eulerian (ALE) framework [17], the position of the
interface with zero thickness is explicitly tracked and is part
of the mesh boundaries. These methods are often inefficient in
some applications, especially when the shape or the evolution
in time and space of the interfaces is complex and not smooth,
e.g., the peakswith sharp angles [23]. The geometrical singularities
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induced by differential dissolution can be overcome by using the
transport of a phase indicator, like in a Volume Of Fluid (VOF)
method [24]. However, in such cases numerical diffusion generates
interface diffusion that must be controlled through the use of
compressive schemes and reconstruction procedures. Complex
mathematical reconstruction may be carried out using Level-set
methods [25–27]. In contrary to requiring the special treatment
to the interface by the sharp-front methods, the diffuse interface
methods (DIM) generate global PDEs for the flow by smoothing
the interface as a diffuse layer where some quantities, especially
a scalar field that plays the role of the phase indicator, vary
rapidly but continuously [28–30]. The continuous nature of the
DIM equations solved is certainly an advantage since a dissolution
problem can be solved on a fixed grid without a peculiar treatment
of the equations in the neighborhood of the dissolution front.
This feature is comprehensively discussed in [31], in which a DIM
method was proposed based on the local non-equilibrium porous
medium theories, such as those originally being used for the type
(i) cavity dissolutions, to model the type (ii) cavity dissolutions. It
was found out that if the mass exchange term becomes very large,
the resulting dissolution front becomes thinner, thus reproducing
the kind of sharp dissolution fronts encountered in the purely
liquid–solid dissolution problem. Also, after a short transient
regime, the thickness of the dissolution front becomes a constant
and that the front velocity becomes close to the one of the sharp
dissolution interface problem.

Currently, most previous studies on type (ii) dissolutions are
limited to pore-scale problems, but few are for large scales.
Also, simulations of three-dimensional dissolution cases are rarely
in the literature. However, the practical cavity dissolutions are
often found with large scales, for instance, large caverns due to
dissolution are reported in various countries [32,33], which belong
to the type (ii) cavity dissolutions. Therefore, it is desirable for this
paper to attempt a study for the modeling of the large-scale cavity
dissolution and the efficient numerical simulation of the processes
in both time and space. Of course, the DIM models are preferred
for numerical implementations because of the continuous nature
of the equations. Also, cavities often have locally non-differentiable
surfaces which are difficult to be handledwith an explicit interface
(sharp front) treatment. Nevertheless, inherently to the DIM
approaches, the dissolution front is characterized by a strong
porosity gradient in the dissolution front area; thus, accurate
numerical solutions would require fine grids in the regions where
the dissolution fronts are likely to progress. This need for fine grids
is also enforced by the fact that the dissolution boundary layermay
be thin because of the low liquid diffusion/dispersion coefficient
and large length-scale involved. These requirements may lead to
the use of quite homogeneous fine grids, thus counter balancing
the advantage of DIM. To tackle this limitation, an efficient solution
is the use of Adaptive Mesh Refinement (AMR), in which the
refinement will take into account, at least, the porosity gradient,
in order to follow the dissolution front, and the concentration
gradient, to have an accurate estimate of themass fluxes and hence
the dissolution velocity.

The applications of AMRhave covered lots of physical problems,
such as shock hydrodynamics analysis [34,35], compressible
flow [36], turbulent flow [37], flow in porous media [38–40], and
oil displacement [41,42]. The AMR methods can be distinguished
into two categories: patch-based and cell-based. The patch-based
AMR methods solve the problem separately on different patches
of the domain under different grid refinement levels, and the
solutions are coupled through the interior boundaries using
interpolations in space and time [34,43,44]. They are often used to
solve the Navier–Stokes equations and hyperbolic equations. The
cell-based AMR methods, which are frequently applied to porous
media flows [39,42], use one-coupled system (one grid) for all

the grid blocks under different levels. The cell-based methods are
efficientwhen the problems are solved implicitly, because the time
step is not so restricted by the size of the fine grid blocks.

In this paper, we use the cell-based AMR for the DIM model
with a fully implicit solving, considering that the mass exchange
terms have strong impact on all the balance equations and the
unknown variables are strongly coupled. We develop a new cell-
based AMR algorithm, which is more advantageous to solve fully
implicitly the balance equations to ensure the mass conservation.
An important aspect of the cell-based AMR is to calculate accurate
fluxes across the block interfaces when blocks from different
AMR levels are involved. Nevertheless, some of the cell-based
AMR algorithms are relatively inaccurate when computing the
velocity flux (with Darcy’s Law) across the cell interfaces as the
cell-centered nodes of different levels are not along the same
straight line. For example, Forsyth and Sammon [41] computed
the interface velocity with Darcy’s Law using the pressure (or
potential) difference evaluated at two cell-centered nodes, which
was pointed out that the truncation error is large. Durbin and
Iaccarino [37,39] improved the accuracy using the reconstruction
and bi-linear extrapolation of solutions of hanging nodes with
anisotropic refinement. It showed globally O(h2) errors where
h represents the characteristic length of the grid block. In this
paper, to respect the physical pressure drop along the coarse
blocks, we develop an accurate scheme to compute the flux on the
interfaces by performing an integration to the pressure along the
path between the central and auxiliary points of a coarse blockwith
the help of Darcy’s Law. More details can be found in Section 4.

The paper is organized as follows. First the original dissolution
model and the diffuse interface dissolutionmodel based on porous
medium theory are introduced briefly, since it has been discussed
elsewhere in the literature. Then, the AMR algorithm is presented,
the focus being more on the problems specific to dissolution
models. Finally, simulation examples are provided which give
some insight on the use of DIM–AMR models.

2. Solid–liquid dissolution model

The original mathematical dissolution problem is characterized
by the existence of separate fluid and solid phases, denoted by l
and s. The solid chemical species dissolves into the fluid phase. As
a minimal example, we will consider a single component in the
solid phase, denoted A, and a binary mixture in the liquid phase.
The total mass balance equation for the liquid phase of density ρl
flowing at velocity vl is written as follows

∂ρl

∂t
+ ∇ · (ρlvl) = 0, (1)

and the mass balance equation for chemical species A in the liquid
phase is

∂ (ρlωAl)

∂t
+ ∇ · (ρlωAlvl − ρlDAl∇ωAl) = 0 (2)

where ωAl represents the mass fraction of species A in the liquid
phase and DAl is the liquid binary diffusion coefficient.

The mass balance equation for the solid phase of density ρs is
the following:

∂ρs

∂t
+ ∇ · (ρsvs) = 0 (3)

where the solid velocity, vs, is normally regarded as zero in most
cases (in a non moving reference frame).

In the case under consideration, we suppose that the solid
dissolution is mainly controlled by thermodynamic equilibrium
at the solid–liquid interface. In such a case, this translates into
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