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a b s t r a c t

Amathematical model based on the lubrication theory is presented for quasi-one-dimensional electroos-
motic flow of a power-law fluid through a slit microchannel with undulating and non-uniformly charged
walls. The channel height and the wall potential may vary periodically with axial position, with a wave-
length much longer than the average channel height. Owing to the nonlinear rheology, the pressure gra-
dient that is internally induced to satisfy continuity of flow has to be found numerically. A trial-and-error
method is adopted to search for a flow rate that will give rise to an axial pressure gradient distribution
with a zero average over one wavelength of the channel. When the flow behavior index is equal to the
reciprocal of an integer, polynomial equations relating the flow rate and the local pressure gradient can
be deduced, which will greatly facilitate the seeking of the solution by trial and error. Numerical results
are also presented to illustrate how the flow behavior indexmay qualitatively change the combined effect
of the geometric and electrokinetic wall patterns on the flow rate.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In microfluidics, a fluid is often transported in a microchan-
nel by means of an applied electric field. Such electrically driven
flow, which draws upon the unbalanced charge distribution in the
electric double layer (EDL) formed near a charged surface, is com-
monly called the electroosmotic (EO) flow. Since the pioneering
work by Burgreen and Nakache [1] five decades ago, EO flow in
microchannels has been extensively studied, especially in the past
twenty years. These existing studies, whether theoretical or ex-
perimental, are mostly for EO flow of Newtonian fluids. Effects of
non-Newtonian behaviors on EO flow have not received much at-
tention until recently. The need for an in-depth understanding of
non-Newtonian EO flow stems from the fact that microfluidic ap-
plications often involve complex fluids such as polymeric solutions
and bio-fluids [2].

Das and Chakraborty [3] and Chakraborty [4] were among
the first who presented theoretical models for EO flow of non-
Newtonian fluids in microchannels. These authors adopted the
power-law model to describe the non-Newtonian rheology. EO
flows of other non-Newtonian fluids, such as Bingham [5], vis-
coelastic [6], and viscoplastic [7,8] materials, have also been in-
vestigated. To this date, the most chosen rheological model for

∗ Corresponding author. Tel.: +852 2859 2622; fax: +852 2858 5415.
E-mail address: cong@hku.hk (C.-O. Ng).

non-Newtonian EO flow has been the power-law model; some
typical works, among many others, are found in Refs. [9–15]. The
power-law model, also known as the Ostwald–de Waele model,
is a relatively simple two-parameter model, by which the shear-
thinning, Newtonian, or shear-thickening behaviors can be con-
veniently represented by the flow behavior index being less than,
equal to, or larger than unity, respectively.

Some noticeable analytical solutions for EO flow of power-law
fluids in microchannels have been obtained by Yang and his col-
laborators [9,11,16,17]. One remarkable finding by these authors
is an expression for the generalized Smoluchowski slip velocity for
power-law fluids. For EO flow under the Debye–Hückel approxi-
mation (i.e., very small electric potentials), they also found closed-
form analytical solutions for some particular values of the flow
behavior index n (namely, n = 1, 1/2 and 1/3), and approximate
analytical solutions for an arbitrary value of n. These and other
analytical studies on EO flow of non-Newtonian fluids are, how-
ever, limited to uniform channels of simple geometry (e.g., a uni-
form parallel-plate or circular channel) such that the flow is steady
and unidirectional, with the velocity depending on one transverse
coordinate only. This is because, for such steady one-dimensional
flow, the shear stress distribution can be determined a priori, which
will then allow the velocity to be found straightforwardly by inte-
gration. For a flow behavior index n, the integrand has the form
of a certain function raised to the exponent of 1/n. If the func-
tion is an elementary function and n is the inverse of an integer, a
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closed-form analytical expression can be obtained for the velocity
profile.

Non-uniformities are known to occur to microchannels. For ex-
ample, the zeta potential, or the electric potential at the shear
plane in the EDL, may vary spatially by construction or owing
to unavoidable surface defects during fabrication. For Newtonian
fluids, many have studied EO flow in microchannels with non-
uniformly charged walls [18–22]. The problem is of practical im-
portance because non-uniform wall charge may lead to secondary
flow in the form of flow separation and recirculation. The prob-
lem becomes more interesting when non-uniform wall charge in-
teracts with an undulating wall shape, as has been investigated
by Ajdari [23,24]. He showed that the combined effect of peri-
odic wall charge and shape modulation is to generate net flow
even if the walls are on average electro-neutral. Charge modula-
tion alone can only produce periodic convective cells, but will not
generate net flow. Net effects may happen only when the symme-
try of forward–backward flow induced by equal positive–negative
charge distributions is broken by the superposition of a wavy wall.
The net flow can be in a direction as if it were uniformly nega-
tively charged even when the average wall charge is positive, and
vice versa. Ghosal [25] also studied EO flow in channels where the
cross-section and surface charge may vary slowly in the axial di-
rection. These existing models are, however, for Newtonian fluids
only. The desire for extending the work to non-Newtonian fluids
has motivated the present study.

In this paper, we aim to study EO flow of a power-law fluid in
a non-uniform slit microchannel with periodic axial variations of
wall charge and channel height. The objective is to develop amodel
that enables us to examine the effects due to the power-law rhe-
ology on the interaction between the two wall patterns (one elec-
trokinetic and one geometric) in controlling the flow through the
channel. The flow is intrinsically two dimensional, and hence the
analytical approach mentioned above will no longer be applicable.
We shall nevertheless simplify the present model by means of the
lubrication approximation, by which the problem can be formu-
lated in a quasi-one-dimensional manner, thereby avoiding solv-
ing the momentum equations in full. The challenging part in the
present problem is to determine an unknown pressure distribu-
tion along the channel. The pressure as a function of the axial co-
ordinate, which is internally induced so as to maintain a constant
flow rate through a channel with axial non-uniformities, has to be
found numerically owing to the nonlinear interaction between the
hydrodynamic and electric forcings for a non-Newtonian fluid. This
distinguishes the present study from previous studies by the au-
thors [26,27], which also look into EO flow of power-law fluid in a
non-uniform channel, but are simplified by the use of the Newto-
nian Helmholtz–Smoluchowski slip boundary condition on taking
into account a near-wall Newtonian depletion layer.

Our problem is defined in further detail in Section 2, where a
mathematical formulation based on the lubrication approximation
and the Debye–Hückel approximation is presented. Highly nonlin-
ear equations are to be solved for the flow rate, which is a constant,
and the pressure gradient distribution, which is a periodic func-
tion of the axial coordinate. To this end, a trial-and-error solution
method is used, as described in Section 3. This method involves
the searching for a flow rate that leads to a pressure distribution
where the net pressure change over one wavelength is zero. For
particular values of the flow behavior index n, namely equal to the
reciprocal of an integer, polynomial equations can be derived to
relate the flow rate and the local pressure gradient. When the in-
teger is an even integer, the type of stress distribution has to be
identified on deriving these polynomial equations. The availability
of these analytical relationships will alleviate the numerical efforts
involved in finding the solution. In Section 4, some physical discus-
sion is presented. We shall look into how the flow behavior index

Fig. 1. Electroosmotic flow of a power-law fluid through a slit microchannel
with undulating and non-uniformly charged walls, where (x, y) are the axial and
transverse coordinates. The wall shape y = h(x) and the wall potential ζ = ζ (x)
are periodic functions of xwith a wavelength L, which is much longer than half the
average channel height h0 .

may modify the combined effect of the wall undulation and the
charge modulation on the EO flow. We shall show that the depen-
dence of the flow rate on the wall pattern parameters may change
with the flow behavior index, not only quantitatively, but also
qualitatively.

2. Mathematical formulation

Our problem is to consider steady electroosmotic (EO) flow of a
power-law fluid through a slit microchannel, of which the channel
height aswell as thewall potentialmay vary gradually and periodi-
cally in the streamwise direction. Fig. 1 shows a definition sketch of
the problem, where (x, y) are the axial and transverse coordinates,
and the x-axis is along the centerline of the channel. For simplic-
ity, only flow that is symmetrical about the x-axis is considered:
the upper/lower walls are at y = ±h(x) and the wall potential at
either wall is given by ζ = ζ (x), both being periodic functions
of x with the same wavelength L. The wavelength L, which is the
length scale for variations of velocity in the axial direction, is as-
sumed to be much longer than the mean channel height: L ≫ h0.
With this sharp contrast in length scales, we further assume that
the Reynolds number of the flow is so small that the lubrication
approximation [28,29] can be applied here. The flow is therefore
nearly one dimensional: the axial velocity u is an order of magni-
tude larger than the transverse velocity v. Also, the inertia of the
flow can be ignored, and the change of u in the x-direction is much
milder than that in the y-direction.

In this work, the near-wall Newtonian depletion layer is as-
sumed to be so thin that it is completely covered by the EDL, and
therefore its effect on the bulk flow can be ignored. This will be
valid when the thickness of the depletion layer, which is approx-
imately the radius of gyration of the molecules making up the
nonlinear rheology, is of the order of nanometers [30], while the
thickness of the EDL, which depends on the bulk ion concentration,
is of the order of hundreds of nanometers. On ignoring the deple-
tion layer, the fluid is taken to be homogeneously non-Newtonian
throughout the flow domain. The rheological behavior exhibited
by a power-law fluid under simple shear is as follows:
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where τ is the shear stress, µ is the flow consistency, and n is the
power-law or flow behavior index of the fluid. The shear-thinning,
Newtonian, and shear-thickening behaviors are exhibited when
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