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a b s t r a c t

Understanding the dynamics of particles in turbulent flow is important in many environmental and
industrial applications. In this paper, the statistics of particle pair orientation is numerically studied in
homogeneous isotropic turbulent flow, with Taylor microscale Reynolds number of 300. It is shown that
the Kolmogorov scaling fails to predict the observed probability density functions (PDFs) of the pair
rotation rate and the higher order moments accurately. Therefore, a multifractal formalism is derived
in order to include the intermittent behavior that is neglected in the Kolmogorov picture. The PDFs of
finding the pairs at a given angular velocity for small relative separations reveal extreme events with
stretched tails and high kurtosis values. Additionally, The PDFs are found to be less intermittent and follow
a complementary error function distribution for larger separations.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Understanding how particles are advected by fluids is of major
interest inmany applications, including the environmental and the
geophysical flows [1]. One outstanding example is the eruption of
volcanoes, where particles with different sizes and inertia are re-
leased into the atmosphere [2] and then transported with turbu-
lent currents [3,4]. In addition to the environmental importance
of understanding the influence of turbulence on particle disper-
sion, this problem is also of practical interest in the industrial flows,
where the advection of particles is involved [5,6].

The theoretical studies of the relative separation between two
particles are based on stochastic models. Many experiments [7,8]
and numerical simulations [9,10] have been performed over the
last few decades in order to accurately evaluate these theories.
Richardson, in his pioneering work [11], has examined the relative
motion of particle pairs in turbulent flows. He has estimated the
scale dependency of the eddy-diffusivity coefficient through the
observation of dispersed plumes. This scale dependency is claimed
to be the origin of the accelerated nature of turbulent dispersion
[12]. In the inertial range of motion (for η ≪ r ≪ L and τη ≪

t ≪ TL, where η is the Kolmogorov dissipative scale, L is the
energy injection length scale of the flow, τη is the local-eddy-turn-
over-time and TL is the large time scale), Richardson has suggested
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that the process of relative dispersion is governed by a diffusion-
like equation. Solving this equation gives the probability of finding
a pair of particles at a specific separation, at any time [13].
Nevertheless, recent studies [14,15] on the dynamics of tracer pairs
that are released from many point sources have reported severe
deviations from the Richardson theory. Additionally, this theory
does not account for the rotational behavior of particle pairs.

The orientation dynamics of a single rigid ellipsoid particle
under Stokes flow has been described by Jeffery [16], where inertia
and the thermal fluctuations are neglected. The same equation
can be used to describe the motion of any axisymmetric particle,
provided that its aspect ratio is known [17]. In the presence ofweak
inertia, Einarsson et al. [18,19] studied the rotation of small and
neutrally buoyant axisymmetric particles in a viscous shear flow,
by perturbatively solving the coupled particle-flow equations. Shin
andKoch [20] presented the results of direct numerical simulations
(DNS) of the translational and rotational motions of fibers in a
fully developed isotropic turbulent flow, for a range of Reynolds
numbers. They concluded that the fibers whose lengths are much
smaller than the Kolmogorov length scale η translate like fluid
particles and rotate likematerial lines.With increasing fiber length,
the translational and rotational motions of the fibers slow down as
they become insensitive to the smaller-scale eddies.

Using computer simulations, Pumir andWilkinson [21] studied
the temporal evolution of the orientation vector of microscopic
rod-like particles. They showed that rod-like particles are more
strongly aligned with vorticity than with the principal strain axis.
An interesting component of turbulence, which is named the
pirouette effect, has been reported by Xu et al. [22]. It has been
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Table 1
Parameters of the numerical simulation.

Kolmogorov dissipative active length scale η 0.005
Spacing between two collocation points in the regular cubic lattice ∆x 0.006
Mean turbulent kinetic energy dissipation rate per unit mass ϵ 0.81
Fluid kinematic viscosity ν 0.00088
Dissipative time scale τη 0.033
Integral time scale TL 67
Energy injection length L 2π
Number of collocation points N 1024
Turbulent velocity fluctuation u′ 1.7

shown that the axis of rotation of tetrahedra tracers aligns with
the initially strongest stretching direction, a phenomenawhich can
be justified by the conservation of the angular momentum. Using
video particle tracking technique, Parsa et al. [23] made accurate
simultaneous measurements of the motion and the orientation
of the rods in the presence of a bi-dimensional chaotic velocity
field. The first three-dimensional experimental measurements of
the orientation dynamics of rod-like particles was also reported
by Parsa et al. [24]. In this work, a good agreement with the
previous numerical simulationswas reported.Moreover, Parsa and
colleagues [25] studied the rotation rate of the rods with lengths in
the inertial range of turbulence. They presented the experimental
measurements of the rotational statistics of neutrally buoyant rods,
and derived a scaling law for the mean-squared rotation rate. The
latter showed a good agreement with the Kolmogorov classical
scaling.

It is noteworthy that, to the best of our knowledge, the orien-
tation of the tracer pairs has not been studied so far. Therefore,
this question will be addressed here, by computing the probabil-
ity of finding a pair of particles at a specific rotation rate, given the
relative separation between them. By considering a particle pair
with a specific separation, one can study the orientation statistics
of an imaginary tracer rod that is delimited by these two particles.
Furthermore, for the first time, the pair rotation rate PDFs at later
times will be presented in this work.

This paper is organized as it follows. The next section describes
the numerical data, and the approach that is used to derive the
rotation rate of the tracer pairs. Afterward, the intermittency
behavior that is observed at the small scales of motion is discussed
in detail. In Section 3, the multifractal (MF) formalism to intercept
the probability density function (PDF) distributions is presented.
Thereafter, the higher-order moments of the rotation rate are
evaluated and compared to the multifractal prediction together
with the Kolmogorov (K41) picture. Finally, the concluding
remarks, and the outlooks are stated in Section 4.

2. Methods

2.1. Particle pair orientation

The rotational dynamics of particle pairs in turbulent flow
can be addressed by solving the dimensionless incompressible
Navier–Stokes equations for a Newtonian fluid, i.e.

∂u
∂t

+ u.∇u = −∇p +
1
Re

∇
2u + f, (2.1)

∇.u = 0, (2.2)

using Direct Numerical Simulations (DNS). In these equations, u
denotes the tri-dimensional velocity field, p is the pressure and
Re is the flow Reynolds number, Re ≡ Lu′/ν. Re measures the
ratio between the nonlinear inertial forces, and the linear viscous
forces, where u′ is the root-mean-squared velocity and ν is the
fluid kinematic viscosity which is defined as the ratio between the
dynamic molecular viscosity µ and, the fluid density ρ. In order

to avoid energy dissipation, the flow was forced by keeping the
total energy constant in the first wavenumber shells, by applying
a large-scale forcing term f. This force injects energy at a mean
rate of ϵ = ⟨f.u⟩, where ϵ is the mean turbulent kinetic energy
dissipation rate [26]. The integration of the equations of motion is
performed on 10243 regular cubic lattice with Taylor microscale
Reynolds number of 300, and periodic boundary conditions. The
simulation parameters are shown in Table 1. With the present
choice of parameters, the dissipative range of length scales is well
resolved because the grid size ∆x is in the range of Kolmogorov
length scale η (as it is reported inmore detail by Biferale et al. [14]).
A fully-de-aliased parallel pseudospectral code, with a second-
order Adams–Bashforth temporal scheme, for 3D homogeneous
isotropic turbulence, assuming constant fluid viscosity anddensity,
is used in order to solve Eqs. (2.1) and (2.2).

The fluid is seeded with bunches of tracers emitted within
a small region which has a size comparable to the Kolmogorov
dissipative scale η. The emission is carried out in puffs of 2000
particles that are followed during a maximum time of 160 τη . The
tracer particles take on the fluid velocity immediately, and adapt
the rapid fluid velocity fluctuations [27]. Therefore, the velocity
of each tracer is related to the instantaneous fluid velocity by the
following equation:

vp ≡
dxp
dt

= u(xp(t), t). (2.3)

The particle trajectories are computed by integrating Eq. (2.3).
The positions and the velocities of each particle are stored at a
sampling rate of τη . For the 2000 particles generated in each puff,
all the possible pairs (approximately two millions) are considered
[28].

2.2. Pair angular velocity

The pair angular velocity can bemeasured on the basis of the in-
stantaneous positions and the velocities of the two particles. Con-
sider a given pair of particles defined at every time by its separation
vector r pointing from the first tracer particle toward the second
one. One of the particles is taken as a reference point for comput-
ing the pair orientation. The relative velocity of the other particle
∆u is decomposed into two components; i.e. 1u∥ parallel to the
separation vector, and ∆u⊥ perpendicular to it. The first particle
and the transverse component of the relative velocity of the second
one, defines a plane of rotation. The axis of rotation e is then nor-
mal to this plane, and defines the direction of the angular velocity
pseudovector ω. By taking θ as the angle between the separation
vector r and ∆u, then the angular velocity vector can be written as

ω =
|∆u⊥|

|r|
e =

|∆u| sin θ

|r|
e, (2.4)

or

ω =
r × ∆u

r2
(2.5)
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