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a b s t r a c t

In this study, we examine the transient electro-osmotic flow of a generalized Maxwell fluid with
a fractional derivative in a narrow capillary tube. Using the integral transform method, analytical
expressions are derived for the electric potential and transient velocity profile by solving the linearized
Poisson–Boltzmann equation and the Navier–Stokes equation. We show that the distribution and
establishment of the velocity comprises two parts: the steady and unsteady parts. We demonstrate the
effects of the relaxation time, fractional derivative parameter, and the Debye–Hückel parameter on the
generation of flow in a graphical manner and we analyze them numerically. The velocity overshoot and
oscillation are observed and discussed.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The research field of electro-osmosis has become increasingly
attractive due to the development ofmicrofluidic devices and their
applications in microelectromechanical systems and microbiolog-
ical sensors [1,2]. Recently, several studies [3,4] have indicated
that themicelle structure of polymer electrolytemembranesmight
only comprise cylindrical nano-channels that facilitate water and
proton transport, rather than large water pore clusters connected
by smaller nano-channels, as found in Gierke’s model. This raises
the problem of how to model the electro-osmotic flow of fluids in
a straight pipe with a circular cross-section.

Most previous theoretical studies of electro-osmotic flow were
limited to a fully developed steady-state flow [5–8]. An electro-
osmotic flow problem in an infinite cylindrical pore with a uni-
form surface charge density was studied analytically by Berg and
Ladipo [9], where the results demonstrated the distribution of the
electric potential and the counter-ions (protons), the velocity pro-
file of thewater flow and its associated total flux, aswell as the pro-
tonic current, conductivity, and water drag. Chang [10] presented
a theoretical study of the transient electro-osmotic flow through a
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cylindrical microcapillary containing a salt-freemediumwith both
a constant surface charge density and a constant surface potential,
where the exact solutions for the electric potential distribution and
transient electro-osmotic flow velocity were derived by solving
the nonlinear Poisson–Boltzmann equation and the Navier–Stokes
equation. By applying a stepwise voltage, Mishchuk and González-
Caballero studied a theoretical model of electro-osmotic flow in
a wide capillary [11], where both periodic and aperiodic flow
regimes were studied with arbitrary pulse/pulse or pulse/pause
durations and amplitudes.

In general, microfluidic devices are used to analyze bioflu-
ids, which are often solutions of long chain molecules and their
behavior is very different from that of a Newtonian fluid, in-
cluding memory effects, normal stress effects, and yield stress.
Thus, these fluids cannot be treated as Newtonian fluids. Re-
cently, many researchers have focused on the non-Newtonian
fluid behavior of biofluids in electrokinetically driven microflows.
The first study of non-Newtonian effects in an electro-osmotic
flow was reported by Das and Chakraborty [12,13], where they
treated biofluids as power-law fluids and they obtained an ana-
lytical solution to describe the transport characteristics of a non-
Newtonian fluid flow in a rectangular microchannel under the sole
influence of electrokinetic effects. For the same non-Newtonian
fluid model, Zhao and Yang [14] obtained the general Smolu-
chowski velocity for electro-osmosis over a surface with arbitrary

http://dx.doi.org/10.1016/j.euromechflu.2015.06.016
0997-7546/© 2015 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.euromechflu.2015.06.016
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechflu.2015.06.016&domain=pdf
mailto:shaoweiwang@sdu.edu.cn
http://dx.doi.org/10.1016/j.euromechflu.2015.06.016


S. Wang, M. Zhao / European Journal of Mechanics B/Fluids 54 (2015) 82–86 83

zeta potentials. Park and Lee [15] derived a semi-analytical ex-
pression for the Helmholtz–Smoluchowski velocity under pure
electro-osmosis conditions for the full Phan–Thien–Tanner (PTT)
constitutive equation and they used a finite volume method to
numerically calculate the flow of the full PTT model in a rectan-
gular duct under the action of electro-osmosis and a pressure gra-
dient [16].

In the present study, we model the non-Newtonian behavior
of biofluids using the generalized Maxwell fluid with a fractional
derivative. The aimof this study is to present the analytical solution
for the unsteady electro-osmotic flow of a generalized Maxwell
fluid in a cylindrical capillary, and we also discuss the effects of
physical parameters on the generation of flow, such as the relax-
ation time, fractional derivative parameter, and the Debye–Hückel
parameter.

2. Governing equations

2.1. Constitutive equation for a generalized fractional Maxwell fluid

The Maxwell model describes one of the simplest linear vis-
coelastic fluids, where it comprises a branch made of a spring in
serieswith a dashpot. The spring is the elastic element and because
the force is proportional to the extension, it represents a perfectly
elastic body that obeys Hooke’s law. The dashpot is the viscous el-
ement and the force is proportional to the rate of extension, so it
represents a perfectly viscous body that obeys Newton’s law. The
corresponding constitutive equation can be expressed as

τ(t)+ λr
dτ
dt
τ = µ

dγ
dt
, (1)

where τ is the shear stress, γ is the shear strain, λr = µ/G0 is the
relaxation time forwhichG0 is a shearmodulus, andµ is a viscosity
constant.

In recent decades, fractional calculus has been utilized with
much success in the description of complex dynamics such as
relaxation, wave, and viscoelastic behaviors. Due to the devel-
opment of the operator in fractional calculus, a straightforward
method for introducing fractional derivatives into models of lin-
ear viscoelasticity is to replace the first derivative in the consti-
tutive equation of the Maxwell model with a fractional derivative
of order α ∈ (0, 1). At a physical level, Bagley and Torvik [17]
demonstrated that the theory of viscoelasticity for coiling poly-
mers predicts constitutive relations with fractional derivatives.
Subsequently, Makris et al. [18] proposed a generalized Maxwell
model with a fractional derivative, where a very good fit with the
experimental data was achieved when the first-order derivatives
of the Maxwell model were replaced by fractional-order deriva-
tives [19]. The shear stress–strain relationship in the fractional
derivative Maxwell model proposed by Makris et al. [18] is

τ + λαr
dα

dtα
τ = G0λ

β
r
dβ

dtβ
γ , (2)

where α and β are fractional parameters such as 0 ≤ α, β ≤ 1,
and dα/dtα is the Caputo fractional derivative defined as

dα

dtα
f (t) =

1
Γ (1 − α)

 t

0

f ′(τ )

(t − τ)α
dτ , 0 ≤ α < 1. (3)

However, Friedrich [20] proved that this type of rheological consti-
tutive equation exhibits fluid-like behavior only in the case where
β = 1. Therefore, the following constitutive equation for the gen-
eralized Maxwell fluid is used in the present study:

τ + λαr
dα

dtα
τ = µ

dγ
dt
. (4)

2.2. Mathematical model of the flow

We consider the electro-osmotic flow of a generalized Maxwell
fluid with a dielectric constant ε at rest at time t ≤ 0, which is
contained in a straight pipewith a circular cross-section and radius
R. It is assumed that the pipe wall is uniformly charged with a zeta
potential, ψw . When an external electric field E0 is imposed along
the axial direction, the fluid in the pipe is set in motion due to
electro-osmosis.

All quantities are referred to cylindrical polar coordinates
(r, θ, z), where r is measured from the axis of the pipe and z along
its length. If we assume a velocity distribution of the form

(0, 0, u(r, t)), 0 ≤ r ≤ R, t > 0, (5)

the initial condition is given by

u(r, 0) = 0, 0 ≤ r ≤ R (6)

and the equation of continuity ∇ ·V = 0 is satisfied automatically.
According to the theory of electrostatics, the net charge density

ρe is expressed by a potential distributionψ , which is given by the
Poisson equation,

∇
2ψ =

1
r
∂

∂r


r
∂ψ

∂r


+

1
r2
∂2ψ

∂θ2
+
∂2ψ

∂z2
= −

ρe

ε
. (7)

The boundary condition is that the zeta potential ψw is given on
the wall of the pipe,

ψ(R, θ) = ψw,
∂ψ

∂r


r=0

= 0. (8)

In the present study, we assume that the charge distribution in
the Debye layer is not affected by time, i.e., the wall of the pipe
has a constant electric potential E0. Thus, the relevant equation of
motion reduces to

ρ
∂u
∂t

=
1
r
∂

∂r
(rτrz)− ρeE0 (9)

which has the following initial and boundary conditions

u(r, 0) =
∂u
∂t


t=0

= 0, (10)

u(r, t) = 0, r = R. (11)

3. Exact solution of the model

For small electrical potential values ψ of the electrical double
layer (EDL), the Debye–Hückel approximation can be used, which
means that the electrical potential is physically small compared
with the thermal energy of the charged species. Thus, we have the
linearized charge density

ρe = −
2z2ve

2n0ψ

kBT
(12)

where zν is the valence of ions, e is the fundamental charge, kB is
the Boltzmann constant, and T is the absolute temperature.

Using the Debye–Hückel approximation [21,22], Eq. (7) can be
linearized to

1
r
∂

∂r


r
∂ψ

∂r


= κ2ψ. (13)

The equation of motion (9) then becomes

ρ
∂u
∂t

=
1
r
∂

∂r
(rτrz)− κ2εψE0, (14)
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