
European Journal of Mechanics B/Fluids 51 (2015) 1–7

Contents lists available at ScienceDirect

European Journal of Mechanics B/Fluids

journal homepage: www.elsevier.com/locate/ejmflu

Flow rate in a channel with small-amplitude pulsating walls
S.V. Mingalev a,b, T.P. Lyubimova b,c,∗, L.O. Filippov a

a Universite de Lorraine, GeoRessources UMR 7359 CNRS-CREGU, 2 rue du Doyen Marcel Roubault TSA 70605, 54518 Vandoeuvre-les-Nancy Cedex, France
b Perm State University, Department of Theoretical Physics, 15 Bukireva street, 614990 Perm, Russia
c Institute of Continuous Media Mechanics UB RAS, Laboratory of Computational Fluid Dynamics, 1 Academica Koroleva street, 614013 Perm, Russia

a r t i c l e i n f o

Article history:
Received 8 May 2014
Received in revised form
31 October 2014
Accepted 17 November 2014
Available online 17 December 2014

Keywords:
Poiseuille flow
Pulsating walls
2d squeezing flow

a b s t r a c t

The influence of wall transverse pulsation on the viscous incompressible fluid flow in a channel under the
action of pressure and gravity is studied under approximation of the small amplitudes. It is found that for
the large values of the Womersley numbers the pulsations decrease the flow rate, rather than increase it,
as it was found in the previous studies for the small Womersley numbers.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

A two-dimensional flow in the field of the gravitational force in
a channel with pulsating walls in the presence of pressure drop is
studied. This problemwas previously analyzed as a particular case
of peristaltic flow by S.L. Weinberg [1] and M.S. Longuet-Higgins
[2], who illustrated that the pulsations result in increase of the flow
rate, which occurs due to the pressure drop. Later, N.I. Arinchin [3]
used this effect to explain the significant increase of blood flow in
the working muscles. Building the research by G.V. Anrep et al. [4],
he proposed that the muscles with high frequency vibrations
squeeze and relax dependent vessels and as the result, the increase
of flow rate is observed. G.A. Lyukhov and I.V. Shugan [5,6] sug-
gested that the effect found by S.L. Weinberg [1] andM.S. Longuet-
Higgins [2] could be used to improve the pumps performance and
they have calculated the energy consumption required to increase
the flow rate bymeans of pulsations. K. Lee et al. [7] arrived at a dif-
ferential equation for the flow rate on the bases of the assumptions,
some of which (for example, an assumption about local Poiseuille
profile of longitudinal velocity) being not evident. K. Lee et al. [7]
came to the conclusion that the flow rate increases with the in-
crease in the amplitude of the walls pulsation and decreases with
the decrease of the Womersley number (product of the distance
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between thewalls by square root from frequency ratio to kinematic
liquid viscosity). Their theory states that for the small walls pulsa-
tion amplitudes the pulsations result in the flow rate increase and
the high walls pulsation amplitudes could lead to both the flow
rate increase and its decrease depending on the Womersley num-
ber value.

We study the solution to the problem about the flow in
a channel with pulsating walls applying the solution class of
Navier–Stokes equations with a linear dependence from coordi-
nate being longitudinal with respect to the channel axis. Earlier,
T.W. Secomb [8] considered this type of solution for this prob-
lem focusing on the analysis of the case with the absent of pres-
sure differences at the channel ends and gravity. The research of
T.W. Secomb illustrates the existence of nonzero time-averaged
velocity field of flow; this flow, however, does not contribute into
the time-averaged flow rate. Later P. Hall and D.T. Papageorgiou [9]
considered the stability of this solution. Their numerical calcula-
tions showed that the increase of the Womersley number for high
amplitudes of walls pulsations led to the chaos according to the
Feigenbaum scenario via the cascade of period doubling.

The problem about the channel walls pulsation influence on
the solute concentration distribution and the problem about the
squeezing flow are close to the ones considered in this article.
S. Tsangaris [10] was among the first studies on the first problem.
Later S.L.Waters [11] looked at this problem and found out that the
solute flow increased as the diffusion coefficient was decreasing,
theWomersley number was increasing and the walls permeability
coefficient was increasing. Going deeper into the problem S.L. Wa-
ters [12] presented a mathematical model of oxygen supply to the
heart after laser myocardial revascularization.
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Fig. 1. Geometry of the problem.

The problem of the squeezing flow is characterized by the
approaching walls squeezing liquid from the channel. For some
laws of walls movements there are analytical solutions to this
problem [13–15]. K.J. Zwick et al. [16] experimentally studied the
squeezing flow. They analyzed the flow of Newtonian and vis-
coplastic liquids between two round plates, which were under the
acting force comprising oscillating and constant components. In
case of viscoplastic liquid they found that the plates vibration re-
sulted in significant increase of flow rate, while no such effect was
found in case of Newtonian liquid.

The purpose of the present paper is to examine the influence of
channel walls pulsations on the fluid transport for the largeWom-
ersley numbers. This problem is solved under the approximation
of small-amplitude wall pulsation. Section 1 deals with the review
on the literature. The second one describes general problem state-
ment. Section 3 of the paper states and solves the problem in zero
and first order by wall pulsation amplitude. Section 4 states the
problem and its time-averaged solution in the second order by the
amplitude. In Sections 5 and 6 we use the found solutions to ana-
lyze the influence of channel walls pulsations on the flow rate and
time-averaged velocity field of flow.

2. Problem statement

Let us consider a two-dimensional flow of viscous incompress-
ible fluid flow in a channel, which walls harmonically pulsate with
the frequency ω and the amplitude a at the presence of the grav-
ity and pressure difference 2∆ at the ends of the channel with the
length 2l (Fig. 1).

The fluid flow is described by a system of Navier–Stokes equa-
tions for the viscous incompressible Newtonian fluid and by a con-
tinuity equation:
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where x and ỹ are longitudinal and transverse (with the relation to
the axis of channel) coordinates, t is time; U and v are longitudinal

and transverse components of velocity, p is pressure; g is the ac-
celeration of gravity, ρ—is fluid density, η is dynamic viscosity, ϕ—
angle between the channel axis and the direction of gravity force.

The position of the upper and lower channelwall in a given time
moment is determined by the equation

ỹ = ±(h + a sinωt). (4)

The position of the channel ends are specified by the equation

x = ±l. (5)

The walls points move only along the OY axis. No-slip boundary
conditions are identified on the lower and the upper walls:

ỹ = ±(h + a sinωt) : U = 0, v = ±aω cosωt. (6)

Pressure-drop boundary condition is specified at the channel ends:

p̃|x=l − p̃|x=−l = 2∆. (7)

Choose the following units of measurement: length—h, time—1/ω,
pressure—ηω, velocity—hω. The problem in a dimensionless form
is characterized by four parameters: the Womersley number W,
the Richardson number Ri, dimensionless amplitude of pulsations
A and dimensionless channel length L:
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After the pressure transformation

p̃ → p − ρyg sinϕ + x∆/l, (8)

the transformation of transverse coordinate

ỹ → y

1 +

a sinωt
h


(9)

and the nondimensionalization the system of Navier–Stokes equa-
tions (1)–(2) and continuity equation (3) has the following form
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and the boundary conditions (6)–(7) are the following ones

y = ±1 : U = 0, v = ±A cos t, (13)
p|x=L = p|x=−L. (14)

The purpose of the coordinate transformation (9) is to set the
boundary conditions at the fixed boundary.

Pressure transformation (8) leads to the exclusion of sum-
mand with ∆ from the boundary condition (14). At the same
time the Richardson number Ri contains a member ∆/(Lρ) be-
sides the gravity acceleration g . This transformation results in the
exclusion of summand ρg sinϕ from the equation for transverse
velocity (11).
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