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a b s t r a c t

Flow through a twisted tube with square cross-section and helical corrugations of arbitrary pitch is
computed under conditions of Stokes flow. The governing equations are formulated in non-orthogonal
helical coordinates in terms of a coupled systemof linear differential equations describing the longitudinal
and transverse flow over the tube cross-section. Numerical solutions are computed by a finite-difference
method on a staggered grid incorporating pressure nodes and three sets of velocity nodes. The results
illustrate the structure of the secondary flow developing over the tube cross-section and document the
effect of the helical corrugations on the axial flow rate.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Partitions, fins, ridges and ribs are inserted in channels and
tubes to disturb the otherwise rectilinear streamlines of pressure-
driven channel or pipe flow and thereby initiate a rotational
motion that promotes passive mixing and facilitates convective
scalar transport. Applications can be found in high- and low-
speed heat exchangers and in processing equipment encountered
in the chemical and food industries. A generalized engineering
concept employs tubes with helical corrugations generated either
by twisting a straight tube with non-circular cross-section, such as
a tubewith elliptical, sinusoidal, or rectangular cross-section, or by
embossing helical corrugations on a circular tube. These designs
are especially attractive in microfluidics applications and other
miniaturized devices where the details of the boundary geometry
are of paramount importance and sometimes the only available
control parameter for manipulating the flow (e.g., [1]).

Twisted tubes should be distinguished from spirally coiled
tubes where a secondary flow induced by curvature, known as
the Dean flow, arises. Flow through a chain of pipe bends has
been shown to exhibit chaotic advection in the context of Dean’s
asymptotic solution [2]. Although flow through commercial and
laboratory tubes with helical corrugations have been investigated
in the laboratory with reference to enhanced heat transfer in high-
Reynolds-number flow, a satisfactory hydrodynamic analysis is
not available. Since unidirectional flow is established in the two
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diametrically opposite limits of zero or infinite pitch, an optimal
pitch is expected where the bulk rotation of the fluid in the core
becomes strongest.

Wang [3] carried out a perturbation analysis for tubes with
small-amplitude sinusoidal corrugations of arbitrary pitch in low-
Reynolds-number inertial flow and confirmed the existence of an
optimal pitch. Pozrikidis [4] performed a complementary pertur-
bation expansion for Stokes flow in tubes with arbitrary cross-
section in the limit of large pitch, and presented numerical
solutions obtained by a finite-element method for an assortment
of geometries up to second-order in the helical wave number. In
more recent years, numerical solutions of the equations govern-
ing hydrodynamics and convective heat transport in twisted tubes
with elliptical or rectangular cross-section were presented in the
applied engineering literature based on commercial codes (e.g.,
[5,6]). In these typical CFD calculations, the simplifications stem-
ming from the helical are not exploited. Instead, full domain dis-
cretization of a test section with chosen inlet and outlet conditions
is employed.

In this paper, numerical solutions of the equations governing
Stokes flow through a twisted tubewith square cross-section at ar-
bitrary helical wave numbers are presented. The governing equa-
tions are formulated in non-orthogonal helical coordinates and
then solved over the square tube cross-section using a novel finite-
difference method on a staggered grid. The numerical results ex-
tend and corroborate previous asymptotic results for large pitch,
and confirm that the helical pitch is an important parameter of the
motion. Venues for complementary experimental work are out-
lined in the Discussion.
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2. Problem statement

We consider Stokes flow through a corrugated tube that arises
by twisting a straight tube with arbitrary cross-section around
its axis over the length of the pitch, L. A point on the surface of
the tube is identified by its cylindrical polar coordinates, (x, σ , ϕ),
where the axial position, x, and azimuthal angle, ϕ, are regarded as
independent variables. The distance of a point on the tube surface
from the tube center is given by
σ = Σ(nϕ − kx), (1)
where Σ(w) is a shape function with period 2π , the integer n
is the azimuthal wave number for a tube with n-fold rotational
cross-sectional symmetry, and the real number k is the axial wave
number corresponding to the axial wave length or pitch, L = 2π/k.
Physically, the helical geometry arises by twisting the tube cross-
section at a particular location by an angle that depends linearly on
the axial distance, x. Note that the tube cross-sectional geometries
at positions x and x + L are identical.

A twisted tube with a square cross-section corresponding to
n = 4 is shown in Fig. 1. In practice, the tube can be fabricated
by a three-dimensional printer or else by stacking thin plates
perforated by square holes while rotating the plates by an angle
determined by the pitch.

2.1. Helical coordinates

A point inside the tube can be identified by its nonorthogonal
helical curvilinear coordinates, (σ̂ , ϕ̂, x̂), as shown in Fig. 2.
The helical coordinates are related to the underlying Cartesian
coordinates by

x = x̂, y = σ̂ cos(ϕ̂ + α x̂), z = σ̂ sin(ϕ̂ + α x̂), (2)
where α ≡ k/n = 2π/(nL) is a wave number. The range of
variation of the helical coordinates inside the tube over the length
of one pitch is

0 < σ̂ < Σ(nϕ̂), 0 < ϕ̂ < 2π, 0 < x̂ < L. (3)
Lines of constant ϕ̂ on the tube surface correspond to a constant
tube radius, σ̂ , as illustrated in Fig. 1.

The covariant metric tensor of the helical coordinates is

gij =
∂x
∂ξ i

·
∂x
∂ξ j

=

1 0 0
0 σ̂ 2 α σ̂ 2

0 α σ̂ 2 1 + α2 σ̂ 2

 , (4)

where ξ 1
= σ̂ , ξ 2

= ϕ̂ and ξ 3
= x̂.

A mean pressure gradient along the tube axis drives a three-
dimensional pressure-driven flow. The fluid velocity can be
resolved into components corresponding to the helical coordinates
(σ̂ , ϕ̂, x̂),
u = uσ̂ eσ̂ + uϕ̂ eϕ̂ + ux̂ ex̂, (5)
where

eσ̂ =
1

√
g11

 ∂x
∂σ̂


x̂,ϕ̂

, eϕ̂ =
1

√
g22

 ∂x
∂ϕ̂


x̂,σ̂

,

ex̂ =
1

√
g33

∂x
∂ x̂


σ̂ ,ϕ̂

(6)

are position-dependent nonorthogonal unit vectors.
The cylindrical polar velocity components are related to the

corresponding helical components by

uσ = uσ̂ ,

uϕ = uϕ̂ +
α σ̂

√
1 + α2σ̂ 2

ux̂ = uϕ̂ + α σ̂ux,

ux =
1

√
1 + α2σ̂ 2

ux̂.

(7)

Fig. 1. Depiction of a helically twisted tube with a square cross-section of side
length 2a for helical pitch L = 3πa/4, corresponding to helical wave number
k = 2/3 and α = 1/6.

Fig. 2. Definition of helical coordinates, (x̂, σ̂ , ϕ̂), in relation to the global Cartesian
coordinates and polar cylindrical coordinates, (x, σ , ϕ).

A key observation is that, if the flow is helically symmetric
along the entire length of the tube, these velocity components are
independent of x̂, and only depend on σ̂ and ϕ̂. Moreover, since
the flow is assumed to be fully developed, the axial derivative of
the pressure is a constant,

−

∂p
∂ x̂


σ̂ ,ϕ̂

≡ G, (8)

where G is the negative of the streamwise pressure gradient.

3. Governing equations

The governing equations in the helical coordinates presented
in Section 2 were derived by Tung & Laurence [7] and discussed by
Pozrikidis [4]. In this section, the equations are recast in a form that
is suitable for the implementation of numerical methods.

We will work in Cartesian coordinates in a plane of constant
streamwise position, x̂, defined such that

ŷ = σ̂ cos ϕ̂, ẑ = σ̂ sin ϕ̂. (9)

3.1. Continuity equation

The continuity equation in a plane normal to the x axis corre-
sponding to a fixed value of x̂ takes the familiar form

∇̂ · û =
1
σ̂

 ∂(σ̂ uσ̂ )

∂σ̂
+

∂uϕ̂

∂ϕ̂


= 0, (10)
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