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a b s t r a c t

Structural sensitivities of soft and steep nonlinear global modes arising in a complex Ginzburg–Landau
model are investigated by calculating the leading-order variation of their amplitude and frequency to an
open-loop forcing and a closed-loop perturbation. The soft global mode is found to be sensitive to both
the open-loop and closed perturbations in the region of linear absolute instability where its amplitude is
not negligible. In particular, the frequency of the soft global mode exhibits large sensitivity at the location
where the frequency of soft global mode was shown to be determined in the previous WKBJ analysis.
On the other hand, the steep global mode shows a large response in the amplitude and the frequency
to the open-loop perturbation located far upstream. To the closed-loop perturbation, the steep global
mode is most sensitive at the location where the stationary front is located, consistent with the previous
WKBJ analysis. Finally, the sensitivities analyzed for the fully nonlinear globalmode are compared to those
obtained from aweakly nonlinear analysis. It shows that theweakly nonlinear analysis fails to capture the
sensitivity behavior obtained from the fully nonlinear globalmode particularly under the strong advection
yielding steep global mode.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Since the introduction of the spatio-temporal analysis of insta-
bilities in idealized parallel flows (i.e. absolute and convective in-
stabilities) [1–4], the globally synchronized nonlinear structures
appearing in open shear flows such as wake [5,6], mixing layer [7],
and hot jet [8], have been understood in terms of the ‘global’ mode,
which often refers to an eigenstructure resulting from a tempo-
rally growing instability over the entire spatial domain. Such a non-
linear structure is often tuned with a well-defined characteristic
frequency and remains as a large-scale coherent motion even in
fully-developed turbulent flows. Therefore, significant effort has
been made for understanding the nature of such structures. The
reader may refer to reviews by Huerre [9] and Chomaz [10] for fur-
ther details on this issue.

Theoretical description of the linearly growing global mode has
beenwell established. Onemay classify it into two categories: local
and global approaches. The local approach is based on aWKBJ the-
ory with the assumption that the base flow is weakly non-parallel
(i.e.X = ϵxwhere xdenotes the streamwise directionwith ϵ ≪ 1).
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In this circumstance, the evolution of a disturbance obeys the lo-
cal dispersion relation obtained by setting the base flow at a given
streamwise location X to be parallel. The frequency ωLG of the lin-
early growing disturbance over the entire flow domain is then de-
termined in terms of the local absolute frequency ω0(X) [11–13]:

ωLG = ω0(X s
l ) with

∂ω0

∂X


X=X s

l

= 0, (1)

where X now turns out to be the complex streamwise location.
It is important to note that the criterion implies that a finite re-
gion of local absolute instability (ω0,i(X) > 0) is necessary for
ωLG,i > 0 [12,13], suggesting physical importance of the local ab-
solute instability in generating linear global instability.

In many practical situations, the flow configuration, however,
often involves strong non-parallelism and complexity. The linear
global mode and its eigenfrequency ωLG in this case are obtained
by numerically solving the global eigenvalue problem. The earliest
approach of this type was probably performed by Zebib [14]
and Jackson [15] who successfully predicted the critical Reynolds
number for the onset of Kármán vortex shedding in bluff-body
wakes. The use of the adjoint global mode was introduced by
Hill [16] for the control of linear global mode, whose work also
led [17] with a similar approach for local absolute instability.
Giannetti and Luchini [18] recently revisited the work by Hill [16]
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and performed a sensitivity analysis to identify the region where
a small localized feedback forcing leads to a large drift of the
linear global frequency. They showed that the linear global
frequency is highly sensitive if the forcing is located in the
region where the regular and adjoint global modes overlap.
Importantly, this location is found to be very similar to the
region where the presence of a small secondary cylinder stabilizes
vortex shedding [19] as also demonstrated by Marquet et al. [20].
Recently, the computed regular and adjoint global modes have
also been used by combining with the classical weakly nonlinear
theory, and it has provided much deeper physical insight into the
dynamics of global instability particularly when multiple linear
global modes compete with each other for nonlinear pattern
selection (see also e.g. Meliga et al. [21] among others).

Despite the encouraging progress, both the local and global
approaches with linear global mode are, in principle, valid only
in the regime where the role of nonlinearity is weak: i.e. the
regime where the bifurcation control parameter such as the
Reynolds number is not very far from the onset of the instability.
Theoretical effort has therefore been made to describe the global
mode in the ‘fully’ nonlinear regime where the bifurcation control
parameter is sufficiently far from the onset. While the local
approach with the assumption of parallel or weakly non-parallel
flow was maintained, the dynamics of a nonlinear global mode
were described in terms of the front propagating stable to unstable
state [22–32]. In the fully nonlinear regime, a growing disturbance
nucleates into a front, the downstream of which is composed of
nonlinear instability waves. As the propagating velocity of the
front is often identical to that of the leading and trailing edges
of a linear wavepacket [33,34], the local absolute instability in
the medium pushes the nucleated front to propagate. The front
subsequently loses its velocity at the location where the nature
of the local instability transits from convective to absolute (X =

X ca), and settles at this location while generating instability wave
downstream. The stationary front therefore acts as a wavemaker,
and the frequency of the nonlinear global mode ωNG is given by
local ‘linear’ absolute frequency at X = X ca: i.e.,

ωNG = ω0(X ca). (2)

The nonlinear global mode, the frequency of which is given by (2),
has been referred to as ‘steep’ or ‘elephant’ mode due to the sharp
stationary front in its spatial structure (see also Fig. 2 and [35]).
Application of the frequency selection criterion (2) to a number of
canonical flows such as wakes [31,36], hot jets [8], and swirling
vortex [37] has been shown to be successful.

By definition, the nonlinear global mode is just a nonlinear so-
lution of the time-dependent governing equation, which is easily
computedwithwell-establishedmodern CFD solvers. Therefore, as
in the case of linear global mode, one may think of a global ap-
proach which identifies the region where a certain type of forcing
would yield a large drift of the amplitude and/or the frequency of
a nonlinear global mode. The scope of the present study is to ad-
dress this issue by designing a sensitivity analysis of a nonlinear
global mode in the fully nonlinear regime. However, the sensitiv-
ity analysis for a nonlinear global mode has been very rarely car-
ried out, and, to the best of my knowledge, only two works have
addressed so far: [38,39]. The former computed sensitivity of the
amplitude (energy) of the stationary nonlinear global mode in a
real Ginzburg–Landau equation, whereas the latter calculated sen-
sitivity of the frequency of the temporally periodic nonlinear global
mode (Kármán vortex shedding) in a circular cylinderwake. Unfor-
tunately, the two approaches have not been applied to the same
flow configuration, thus it is difficult to see what kind of differ-
ences would be yielded depending on the objective functional of
interest (i.e. amplitude or frequency). Furthermore, their results

have not been well discussed in comparison with the physical in-
sight gained from the previous local analyses using the framework
of the front propagation. To fill these gaps, the present study is
aimed at applying the two approaches to a supercritical complex
Ginzburg–Landau (CGL) equation, which yields nonlinear global
modes extensively analyzed by a nonlinearWKBJ analysis [28–30].

This paper is organized as follows. In Section 2, we briefly in-
troduce linear and nonlinear global modes in the CGL equation
with their frequency criterion. In particular, two types of nonlin-
ear global mode respectively called ‘soft’ and ‘steep’ modes are
illustrated [28–30]. In Section 3, structural sensitivities of the am-
plitude and the frequency of a nonlinear global mode to small
open-loop and closed-loop perturbations are formulated following
Hwang andChoi [38] and Luchini et al. [39]. The computed sensitiv-
ities are then shown in Section 4with a discussion. In particular,we
compare themwith those obtained using a weakly nonlinear anal-
ysis. Finally, a summary and a few remarks are given in Section 5.

2. Nonlinear global modes in the complex Ginzburg–Landau
equation

We consider a complex Ginzburg–Landau equation given in the
following form [30]:

i
∂ψ

∂t
=


ω0(x)+

1
2
ωkkk20


ψ + iωkkk0

∂ψ

∂x

−
1
2
ωkk

∂2ψ

∂x2
+ γ |ψ |

2ψ, (3a)

with boundary condition

ψ(x = ±∞) = 0. (3b)

Here, ψ(x, t) is the complex state function with the streamwise
direction x ∈ (−∞,∞) and the time t ∈ [0,∞). The parameters
k0,ω0(x),ωkk and γ are set to be complex.We note that this form of
the Ginzburg–Landau equation is convenient for the local stability
analysis, as we shall see in Section 2.1 where the details of the
parameters, k0,ω0, andωkk are given. For simplicity, we set k0,ωkk,
and γ to be constant, whileω0(x) is considered to vary along x such
that:

ω0(x) = ωmax
0 +

1
2
ω0xxx2, (4)

where ω0xx is a complex constant. It should be mentioned that
ω0(x) here is purposely set as in (4) to avoid the term depending
linearly on x (see also Section 2.2.2 for further discussion).

In setting the coefficients of (3), there are some requirements to
ensure the well-posedness of (3). It is useful to rearrange (3) as

∂ψ

∂t
+ U

∂ψ

∂x
= µ(x)ψ + D

∂2ψ

∂x2
− iγ |ψ |

2ψ, (5a)

where

U ≡ −ωkkk0, µ(x) ≡ −i

ω0(x)+

1
2
ωkkk20


,

D ≡
i
2
ωkk.

(5b)

This form suggests that U can be interpreted as the complex
advection velocity, µ(x) a function controlling local instability
property, and D the complex diffusivity where its imaginary part
acts for dispersion. First, to restrict our discussion only to the case
of downstreamadvection, it is necessary to setUr ≥ 0, giving k0,i ≤

0. Also, the well-posedness of (3) with its boundary condition
(ψ(x = ±∞) = 0) would require any perturbations inψ to decay
at x = ±∞, yielding ω0xx,i < 0. The positive diffusivity (Dr > 0),
which also ensures the causality of (3), gives ωkk,i < 0. Finally,
to obtain stably sustaining nonlinear global modes, the nonlinear
term should be stabilizing, requiring γi < 0.
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