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h i g h l i g h t s

• Reviews recent achievements about transition to turbulence in wall-bounded flows.
• Highlights laminar–turbulent oblique band coexistence in plane Couette flow.
• Analyzes respective relevance of temporal chaos and spatiotemporal chaos.
• Introduces account of transition using the tools of statistical physics.
• Presents new results and a model for band patterning in Couette flow.
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a b s t r a c t

Themain part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines
the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective
with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes.
Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of
nontrivial flow regimes between the global stability threshold Reg, the upper bound for unconditional
return to the base flow, and the linear instability threshold Rec characterized by unconditional departure
from the base flow.

The transitional range around Reg is first discussed from an empirical viewpoint (Section 1). The recent
determination of Reg for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined.
In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar
and turbulent bands, up to a third threshold Ret beyond which turbulence is uniform.

Our current theoretical understanding of the problem is next reviewed (Section 2): linear theory
and non-normal amplification of perturbations; nonlinear approaches and dynamical systems, basin
boundaries and chaotic transients in minimal flow units; spatiotemporal chaos in extended systems and
the use of concepts from statistical physics, spatiotemporal intermittency and directed percolation, large
deviations and extreme values. Two appendices present some recent personal results obtained in plane
Couette flow about patterning from numerical simulations and modeling attempts.

© 2014 Elsevier Masson SAS. All rights reserved.

Cautionary note about the literature cited. The number of articles
related to the topics examined here is tremendous and, though
already referring tomore than 150 publications, the bibliography is
far from exhaustive by at least one order of magnitude. For a better
coverage, the reader is invited to consult the literature cited in the
reviewpapersmentioned. I tried not to bias the list according tomy
personal interests, while choosing what I thought to be the most
representative papers in each subtopic, sometimes themost recent

E-mail address: paul.manneville@ladhyx.polytechnique.fr.

publications of given people or groups reviewing related works
in their introductions and pointing backwards to earlier relevant
papers. For convenience, references are listed in alphabetical order
of the first author and next chronologically.

The article published by O. Reynolds in 1883 [130] founded the
scientific approach to the problem of the transition to turbulence.
Already an abstract in itself, its title ‘‘An experimental investigation
of the circumstances which determine whether the motion of water
shall be direct or sinuous and the law of resistance in parallel chan-
nels,’’ summarized the main features of the problem and, between
the words, identified its control parameter Re nowadays called the
Reynolds number. This parameter is a measure of the typical shear
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present in the flow under consideration.1 When Re is small viscous
effects have enough time to tame departures from the base flow
profile so that ‘direct motion’ in Reynolds’ own terms, i.e. laminar
flow, prevails. On the contrary, when Re is large ‘sinuous motion’
can be amplified up to being considered as turbulent. The problem
is then to determine/predict the value of Re at which the transition
takes place.

On general grounds two characteristic values can be defined
[79,99,70], a threshold for unconditional or global stability Reg,
and a threshold for unconditional instability Rec, ‘c’ for ‘critical’.
Thresholds Reg and Rec are global and local quantities, respectively.
These terms have to be understood in the general context of
dynamical systems: In the state space, ‘global’ meanswhatever the
amplitude and shape of the perturbation brought to the base state,
whereas ‘local’means infinitesimal, which allows linearization and
eigenmode decomposition. Rec is obtained from linear stability
analysis that can be continued in the weakly nonlinear regime
around threshold by perturbation. At this level, issues are in
principle purely technical (but possibly delicate) in a well-posed
setting.

Obviously, Reg lies below Rec and between Reg and Rec stability
is only conditional: it depends on the shape and intensity of pertur-
bations brought to the base flow. Global stability is thereforemuch
difficult to ascertain since the variety of possible perturbations
cannot be tested in any systematic way. In a few cases, one can
show that local and global thresholds coincide, which makes the
transition supercritical. Thermal convection in a horizontal layer
heated from below is the most celebrated example of such a cir-
cumstance [117]. This case is exceptional and, in general, perma-
nent departures from the base state may exist in the subcritical
range below Rec. The energy method [79,117] generates a lower
bound ReE to the global stability threshold. ReE is the threshold
below which the kinetic energy contained in any perturbation to
the base flow decreases to zero in a monotonic way. This bound is
usually very conservative. By contrast, the condition defining Reg
bears on the ultimate decay of the perturbations, possibly at the
end of long transients during which the energy may vary wildly
before decreasing like below ReE.

Linear instability dealswith infinitesimal perturbations that can
be analyzed as superpositions of elementarymodes of infinite spa-
tial extension, e.g. Fouriermodes. A contrario, typical perturbations
living below Rec have finite amplitudes and finite supports, and
coexist with laminar flow. These are the flashes of turbulence ob-
served by Reynolds in his pipe or the turbulent spots seen in planar
geometries. When the applied shear is very large, the system is ex-
pected to be uniformly turbulent. At least conceptually, one should
therefore find another threshold separating laminar–turbulent co-
existence from uniform turbulence since this represents two qual-
itatively different situations. The localization of such a threshold,
called Ret in the following, will also be discussed below. What is
generally called the transitional range is therefore the Reynolds
number interval extending from around Reg to around Ret. Table 1
recapitulates known values of these thresholds for the two cases of
main interest here, pipe flow and simple shear flow, both of them
with Rec = ∞.

Our understanding of the transitional range in wall-bounded
flows has made considerable progress recently. Relevant informa-
tion can be found in the proceedings of the 2005 IUTAM Sympo-
sium edited by Mullin & Kerswell [112]. In 2008, a whole issue of

1 Explicitly, Re = UL/ν, where U is a typical amplitude of velocity variations,
L a typical distance over which the speed varies, and ν the kinematic viscosity of
the fluid. It can be understood as the ratio of a viscous time scale τv = L2/ν to an
advection time scale τa = L/U .

Table 1
Characteristic values of the control parameter in some wall-bounded flows. The
ingredients for the Reynolds number as introduced in note 1, Re = UL/ν, are the
mean speed U and the diameter of the pipe D for Hagen–Poiseuille flow (HPF); for
plane Poiseuille flow (PPF) and plane Couette flow (PCF) L, usually noted h, is the
1/2-distance between the plates; for PPF U is the speed of the laminar flow in the
center plane and for PCF the speed of the driving plates. Reg is the global stability
threshold, Rec the linear stability threshold, and Ret the threshold beyond which
turbulence is featureless.

Flow ReE [79] Reg Rec Ret

HPF 81.5 2040 [3] ∞ [135] ∼2700 [171]
PCF 20.7 ∼325 [17] ∞ [132] . 415 [124], Appendix
PPF 49.6 ∼840 [160] 5772 [118] & 1600 [158]

the Philosophical Transactions of the Royal Society has been de-
voted to the celebration of the 125th anniversary of the publication
of Reynolds’ article, where discussions of experimental and theo-
retical findings for pipe flow, also known as Hagen–Poiseuille flow
(HPF) can be found [52]. Several reviews have also appeared, fo-
cusing on theoretical and numerical aspects [51,170] or on the ex-
periments [170,113], summarizing the state of the art before 2010.
Accordingly, in Section 1.1 I shall limit myself to a brief account of
posterior results in HPF centered on the quantitative determina-
tion of Reg [3] that will be defined as the value of Re below which
the flashes of turbulence always decay in the long term and above
which they are able to split and spread turbulence in the pipe.

With respect to simple shear flow, also called plane Couette flow
(PCF), only partial reviews of experimental and numerical results
seemingly exist [126,51]. I shall not attempt to be comprehensive
but try to focus on features that, in my opinion, are the most in-
teresting. Accordingly, in Section 1.2 I will just sketch the history
of the subject and present experimental results gathered by the
Saclay group [126] in the perspective of earlier andmore recent nu-
merical findings. In a first series of experiments by this group, con-
cludedwith Bottin’s thesis [16], the focus was on the identification
of mechanisms and the determination of Reg based on the dynam-
ics of turbulent spots in setups with moderate aspect ratio.2 Later,
in the larger aspect ratio setup used by Prigent [124], patterns of
alternately laminar and turbulent oblique bandswere shown to oc-
cupymost of the transitional range, leading to the determination of
the upper threshold Ret. I shall situate these findings in their con-
text and relate them to the transition in cylindrical Couette flow
(CCF) which has PCF as its small gap limit and the banded regime
as the limit of spiral turbulence observed in that system [27,1,124].

Other cases of comparable interest, especially in view of appli-
cations, will not be reviewed here, in particular plane Poiseuille flow
(PPF), the flow between two motionless plates driven by a pres-
sure gradient, and the Blasius boundary layer flow [136]. Both are
linearly unstable above some finite critical Reynolds number Rec
but also display nontrivial subcritical flow in the form of turbulent
spots promoting developed turbulence when the level of residual
turbulence in the base flow is large (natural transition) or when it
is clean enough but appropriately triggered. Thresholds for PPF are
also quoted in Table 1.

Some views on the present theoretical understanding of the
transition will next be presented in Section 2. I shall first recall
linear properties related to the stability of wall-bounded flows
compared to free shear flows [77,137] and the importance of non-
normal energy growth [156,138], streamwise vortices and lift-
up [54,88], and the process underlying the sustainment of flow
patterns away from laminar flow uncovered by Waleffe and

2 For PCF, two aspect ratios can be defined, Γx = Lx/2h and Γz = Lz/2hwhere Lx
and Lz are the streamwise and spanwise dimensions of the shearing zone, and 2h
the gap between the moving plates. For HPF, this would just be L/D where L is the
length of the pipe and D its diameter.
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