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a b s t r a c t

We revisit the inviscid spatio-temporal stability properties of mixing layers. Earlier comparisons of the
dispersion relations pertaining to the broken line model and the hyperbolic tangent profile have shown
that the temporal stability properties are mainly governed by the velocity difference and the shear layer
thickness, and that they are very robust to the details of the velocity profile. The situation however dra-
matically changeswhen one considers the spatio-temporal stability properties of these two limiting cases,
which were shown to differ significantly. With the aim to better understand these strong differences, we
introduce a family of velocity profiles that continuously spans from the broken line model to the tanh
profile. We show that the momentum thickness appears as an important parameter that helps better
predicting the absolute/convective properties of a given mixing layer.

© 2014 Published by Elsevier Masson SAS.

1. Introduction

The concept of absolute and convective instability was first ap-
plied to the analysis of mixing layers in the landmark paper of
Huerre and Monkewitz [1]. Mixing layers are primarily charac-
terized by three non-dimensional parameters: the Reynolds num-
ber, the shear layer thickness and the advection parameter (or
velocity ratio) R that compares the velocity difference between the
streams to their mean value. Using the tanh velocity profile first
introduced by Michalke [2], Huerre and Monkewitz [1] found that
a finite amount of counterflow was required for the flow to be-
come absolutely unstable, which could be quantified in the transi-
tion value of the advection parameter R∗

= 1.315. This prediction
was later remarkably confirmed experimentally by Strykowski and
Niccum [3].

It is a common belief that the temporal stability properties of a
shear layer can be easily determined by using the broken-line ve-
locity profile, first introduced by Lord Rayleigh [4], provided the
advection parameter and shear layer thickness are known. Indeed,
the temporal stability properties, while not being exactly similar,
share common features: both follow the same slope at k = 0, given
by the Kelvin–Helmholtz vortex layer instability. Both also display
a rounded bell shape with a maximum growth-rate of approx 0.2
attained for a wavenumber that scales like the cut-off wavenum-
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ber and as the inverse of the shear-layer thickness. This is natu-
ral since this is the only length-scale in this problem. As stated by
Villermaux [5], ‘‘the essence of the problem is fully contained in
this caricature which presents the great advantage [. . . ] of a trans-
parent analytical result’’.

The broken-line velocity profile has not only become popular
because it led to an analytical dispersion relation, but also because
the presence of edges in the velocity profile, or in other words
of vorticity sheets, naturally introduces an edge-wave or Rossby-
waveperspective [6], that allowed for instance new interpretations
of spatio-temporal stability properties of confined wakes [7]. The
robustness of the dispersion relation with respect to a regulariza-
tion of the corner discontinuity has been assessed by Balsa [8].

However, when it comes to determine the velocity ratio at the
transition between absolute and convective, R∗, the broken line
model and the continuous profiles start to behave significantly dif-
ferently. As analysed in detail by Ortiz, Chomaz and Loiseleux [9],
the saddle point pinches at infinity as the critical advection param-
eter R∗

= 1 is reached. This suggests that the details of the veloc-
ity profile do matter and that comparison in experiments can only
be drawn if the experimental flow fields are measured with suf-
ficient accuracy, as also concluded by Marquet and Lesshafft [10],
who have pointed out the large sensitivity of the spatio-temporal
stability properties with respect to minute changes in the velocity
profile.

The purpose of the present study is to analyse the continuous
transition from the broken-line shear layer profile to the continu-
ous tanh profile. The erf solution being an asymptotic solution of
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Table 1
Main stability characteristics of the broken line mixing layer model, the erf profile
and the tanh profile: maximum growth-rate σmax , associated wavenumber kmax ,
cut-off wavenumber kc , critical velocity ratio for absolute/convective instability
transition R∗ and momentum thicknessΘ .

σmax kmax kc R∗ Θ

broken line 0.2 0.2 0.32 1 1/6
erf profile 0.19 0.21 0.45 1.28 1/

√
2π

tanh profile 0.19 0.22 0.5 1.315 1/4

the Navier–Stokes equations in the large Re and small R limits [11]
is also considered. We ask the question whether the spatio-
temporal properties continuously depend on the degree of regu-
larization of the corner discontinuity or if the broken line model is
a singular limit.

2. Governing equations

We consider a mixing layer U(y) bridging two streams of re-
spective parallel velocities U1 and U2 over a distance characterized
by the vorticity thickness

δω =
|∆U|

max(|Ω(y)|)
, (1)

where∆U = U2 −U1 andΩ(y) = −
dU
dy is the transverse vorticity.

Introducing the mean velocity of the stream Ū = (U1 + U2)/2, the
velocity profile can be written as

U(y) = Ū +
∆U
2

u

4y
δ


, (2)

where u is an odd increasing function asymptoting 1 at +∞ with
prescribed slope in 0 ( dudy (0) =

1
2 ), which entirely characterizes the

shape of the profile. Upon introducing Ū as velocity scale and δω/4
as length scale, the velocity profile reduces to

U(y) = 1 + Ru(y), (3)

where the notation has not been changed to account for non-
dimensional variables. The parameter R = (U2 − U1)/(U1 + U2)
is a measure of the velocity difference across the layer and is re-
ferred to as advection parameter or velocity ratio. If 0 < R < 1
both streams run in the same direction, while for R > 1 they flow
in opposite directions. In the limiting case where R = 0 there is no
shear, and, when R = 1, only one stream is present.

Considering the inviscid limit, we shall assume that the spatial
evolution of the mixing layer is so small over a wavelength of the
instability wave that the mean flowmay be considered as parallel.
Under these conditions, a small disturbance of wavenumber k and
frequency ω, is defined by the perturbation stream function

Ψ (x, y, t) = ψ(y) exp(i(kx − ωt)). (4)

As derived in classical textbooks [12], the eigenfunctionψ(y) then
satisfies the Rayleigh equation

[U(y)− ω/k](ψ ′′
− k2ψ)− U ′′(y)ψ = 0, (5)

with boundary conditions ψ(±∞) = 0. We discretize the above
Rayleigh equation using a pseudo-spectral collocation method in-
cluding an algebraicmapping [13] usingN = 80 collocation points.
The discrete eigenvalue problem is solved using matlab.

3. Base flows

Themost studied velocity profilemodelling amixing layer is the
tanh profile as popularized by Michalke [2],

utanh(y) = tanh(y/2). (6)

However, as detailed in Monkewitz and Huerre [11], the profile
emerging naturally from a boundary layer type asymptotic
expansion at large Reynolds numbers and small values of the shear
parameter R is the error function profile.

uerf(y) = erf (
√
πy/4). (7)

Finally, the broken line velocity profile introduced by Rayleigh [14]
is defined by

ubroken(y) = −1 when y < −2
ubroken(y) = y/2 when − 2 < y < 2
ubroken(y) = 1 when y > 2.

(8)

These three profiles share the same shear layer thickness. In order
to quantify the differences between these profiles, it is natural to
use their momentum thickness, defined as

Θ =


∞

−∞

(1 − u(y))(1 + u(y))dy. (9)

The momentum thickness (made non-dimensional by 4δω) associ-
ated to the three reference profiles are reported in Table 1. They
are seen to increase as the edges are progressively cut from 1

6 for
the broken line model to 1

4 for the tanh profile, through the value
1

√
2π

. The effect of rounding the corners of the broken line profile is
to increase the momentum thickness, in accordance with its defi-
nition associated to the momentum deficit of the velocity profile,
as compared to the vortex sheet model jumping abruptly from one
stream velocity to the other at y = 0.

It is instructive to compare the corresponding vorticity distribu-
tions to these velocity profiles and in particular of the two limiting
velocity profiles considered (tanh and broken line). For the broken
line profile, the associated vorticity distribution is a squarewindow
(or top hat) function while it is a Gaussian vorticity distribution for
the erf profile and a sech2 distribution for the tanh.

Ωtanh(y) = sech2(y/2)/2, (10)

Ωerf(y) = exp(−πy2/16)/2, (11)
Ωbroken(y) = 0 when y < −2
Ωbroken(y) = 1/2 when − 2 < y < 2 (12)
Ωbroken(y) = 0 when y > 2.
Observe that all vorticity distributions have the same maximum
(equal to 1/2 in non dimensional units) and the same vorticity in-
tegral.

In order to continuously interpolate through these three pro-
files, we introduce a family of profiles that results from the solu-
tions of the diffusion equation with initial condition the top hat
profile or the sech2 profile and in both cases the Gaussian distribu-
tion as asymptotic solution:

∂Ω

∂τ
=
∂2Ω

∂y2
, (13)

Ω(±∞, τ ) = 0, (14)
Ω(y, τ = 0) = Ωtanh(y) or Ωbroken(y). (15)

At each time step the vorticity distribution is rescaled to keep a
constant integral and constant maximum. The associated velocity
profiles, retrieved by numerical spatial integration are plotted
together with the vorticity distributions in Fig. 2(a), (b). Since the
time τ appears here only as an artificial parameter, the above
profiles are now labelled by their momentum thicknessΘ .

4. Temporal stability

Let us first consider the temporal stability frameworkwhere the
wavenumber of the instability is prescribed k ∈ R and the complex
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