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a b s t r a c t

Wepresent three-dimensional (3D) numerical simulations of the pairing of two vertical columnar vortices
in a stably stratified fluid. Whereas in two dimensions, merging of two isolated vortices occurs on a
diffusion time scale, in the three-dimensional stratified case we show that merging is a much faster
process that occurs over an inertial time scale. The sequence of dynamical processes that leads to this
accelerated pairing involves first a linear stage where the zigzag instability develops displacing vortices
alternately closer and farther with a vertical periodicity scaling on the buoyancy length scale LB = Fhb,
where Fh is the horizontal Froude number (Fh = Γ /πa2N with a the core size of the vortices, Γ their
circulation and N the Brunt–Väisälä frequency) and b is the separation distance between the vortices. In
layers where the vortices have started to move closer, their distance decreases exponentially with the
growth rate of the zigzag instability. Non-linearities do not seem to affect this process and the decrease
only stops when the pairing is completed in that layer. At the same time, enstrophy that has also grown
exponentially reaches a magnitude of the order of the Reynolds number Re = Γ /(πν) (where ν is the
kinematic viscosity of the fluid) if the Reynolds number is not too large, meaning that energy is then
dissipated on the inertial time scale. This dissipation occurs in thin layers and the vortices that were
originally moving away in the intermediate layer start slowing down and rapidly merge.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Atmosphere, oceans and some astrophysical fluids are stably
stratified (see [1] for a review) and rotating. At mesoscale for the
Earth’s atmosphere, i.e. between 1 and 100 km, the planetary rota-
tion is weak and the stratification controls the dynamics. Nastrom,
Gage and Jasperson [2] reported that the kinetic energy spectrum
versus horizontal wavenumber kh is of the form k−5/3

h for the at-
mosphere in the mesoscale range, whereas it is of the form k−3

h

at larger scales. Following Lilly [3], they suggested that this k−5/3
h

spectrum might be due to an inverse energy cascade from small
(∼1 km) to large (∼500 km) scales, similar to the energy cascade
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predicted for two-dimensional (2D) turbulence by Kraichnan [4]
and well confirmed by numerical simulations and experiments. In
2D, energy is transferred by the merging of two vortices to form
a larger one [5]. The idea that the potential vorticity in a stratified
flow even at slow time scale in the absence of the gravity wave
component might behave as a 2D fluid was questioned by many
authors [6–10]. In particular, [11,12] showed that several 2D flows
were unstable when the fluid is stratified, and they named this in-
stability the zigzag instability. Specifically, the zigzag instability af-
fects co-rotating vortex pairs [13,12] and has a growth rate which
scales as twice the external strain field generated by one vortex on
the other (S = Γ /2πb2). Thus, this instability is as fast as the ro-
tation Ω = Γ /πb2 of the vortex pair. Destabilization should thus
occur in a few rotations of the pair and as a consequence, this in-
stability should strongly affect the merging between vortices, and
may therefore help explaining the departure of the stratified tur-
bulence from two-dimensional turbulence.

In the present paper, we investigate through numerical
simulations a single pairing event in a strongly stratified fluid
in order to find out to which extent stratification affects this
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process. In particular, we will compare this stratified merging
to purely two-dimensional merging. The second section presents
the numerical method used to study a pairing event by direct
numerical simulations. The third section shows the qualitative
behavior of the merging. The fourth, fifth and sixth sections
describe and analyze in detail the pairing in a stratified fluid.

2. Numerical simulations

2.1. Governing equations and numerical method

The dynamics of the flow is governed by the incompressible
Navier–Stokes equations under the Boussinesq approximation:

∂u
∂t

= u ∧ ω − ∇


p +

u2

2


− ρez + ν∆u, (1)

∂ρ

∂t
+ u · ∇ρ = N2uz + D∆ρ (2)

where ez is the unit vector in the z-direction pointing upward,
p the pressure field, u the non-divergent velocity (div u = 0),
uz = ez ·u its vertical component,D the diffusivity of the stratifying
agent and ν the kinematic viscosity. The density field is the sum
of a constant density ρ0, a linear profile ρ̄(z) and a perturbation
ρ0ρ/g . The density perturbation is rescaled by g/ρ0 in order to
avoid an extra constant in Eq. (1). The Brunt–Väisälä frequency is
N =

√
−(g/ρ0)dρ̄/dz, where g is the gravity acceleration.

Eqs. (1)–(2) are expressed in the Fourier space:

dû
dt

= P(k)

u ∧ ω − ρ̂ez


− νk2û, (3)

dρ̂
dt

= N2ûz − Dk2ρ̂, (4)

where the Fourier transform is denoted by a hat, k is thewavenum-
ber and P(k) is the projection operator on the solenoidal space. To
compute (3)–(4), we use a pseudo-spectral solver adapted from the
unstratified code used by [14]. The computational domain is a par-
allelepipedic box of height Lz with a square horizontal base (Lx = Ly
where Lx and Ly are the dimensions respectively in the x and y di-
rections). The spatial resolution is chosen to be about the same in
all directions implying that the numbers of collocation points on
the horizontal directions are equal, nx = ny, and that the number
of collocation points on the vertical is nz ∼ nxLz/Lx. Time integra-
tion is performed with a second order Adams–Bashforth scheme.
Dissipative terms are integrated exactly. The 2/3 rule is applied for
de-aliasing.

2.2. Initial conditions

The initial velocity field U is made of a quasi-steady 2D pair of
co-rotating vortices U2D(x, y) perturbed by the most unstable 3D
eigenmode U ′

U(x, y, z, t = 0) = U2D(x, y) + Aℜ(eikzmzU ′(x, y)) (5)

where A is the amplitude of the perturbation, ℜ denotes the real
part and kzm is themost unstable vertical wavenumber obtained by
a linear stability analysis [13]. Inmost simulations, the vertical size
of the box Lz is set to the most unstable wavelength Lz = λmax =

2π/kzm.
In order to obtain the basic flow U2D, a 2D non-linear sim-

ulation is first carried out with the following initial vortic-
ity field corresponding to two identical co-rotating gaussian

vortices of initial radius ai, circulation Γi, separated by an initial
distance bi:

ωi =
Γi

πa2i


exp


−

(x −
bi
2 )2 + y2

a2i



+ exp


−

(x +
bi
2 )2 + y2

a2i


. (6)

This two-dimensional simulation is conducted for the same set
of parameters (nx, ny, Lx, Ly, ν) as the 3D simulation. Each vortex
is deformed by the strain field created by the companion vortex
and becomes slightly elliptical [15–18]. Then, the vortex core
a increases slowly by diffusion whereas the distance b remains
constant. The velocity field U2D is taken during this quasi-steady
phasewhen the ratio a/bhas reached thedesired initial value a0/b0
for the 3D numerical simulation. The two-dimensional simulation
is also continued further in order to have a reference simulation
to analyze the 3D simulations. The linear stability analysis of the
base flow U2D is also conducted in order to find the most unstable
vertical wavenumber kzm and eigenmode U ′ [13]. The eigenmode
U ′ is normalized so that its total energy per unit vertical length
scale is equal to unity.

Space and time are non-dimensionalized respectively by the
core size a0 and by the inverse of the vorticity at the center of
each vortex τ = πa20/Γ0, where Γ0 is the circulation of each
individual vortex at time t0. The same notation is kept for the
non-dimensional variables for the sake of simplicity. The Reynolds
number is defined as Re =

Γ0
πν

and the Froude number is Fh =
Γ0

πa20N
.

The Schmidt number Sc = ν/D is set to unity.

3. Qualitative behavior of the pairing of vortices in a stratified
flow

The dynamics of the merging of two co-rotating vortices in a
linearly stratified flow has been first computed without the so-
phisticated initial condition described above. The evolution of two
gaussian vertical vortices perturbed by a low amplitude 3D white
noise has been computed in a cubic box and with a moderate reso-
lution 1283. The initial ratio between the core size ai and separation
distance bi is ai/bi = 0.15. The initial Froude number is Fh = 1.33
and the Reynolds number is Re = 2120. The size of the domain is
Lx = Ly = Lz = 10πai. Fig. 1 shows the temporal evolution of the
vertical vorticity. At the beginning of the simulation (t = 0), the
vortices are columnar and rotate one around the other at angular
velocity Ωi = Γi/(πb2i ). At time t = 478, the two vortices are dis-
placed symmetrically alternately closer and away along the verti-
cal in a direction making a well defined angle with the line joining
the vortex centers. As a result, the distance between the two vor-
tex axes oscillates along the vertical. This perturbation structure is
similar to the one associated with the zigzag instability described
byOtheguy et al. [13]. At t = 557, the pairing of the vortices has oc-
curred in layers where they were brought closer by the instability.
These layers alternate with layers where two well-separated vor-
tices are still rotating one around the other. At t = 955, merging
has eventually occurred at each vertical station. The final vortex
displays a variation of core size along the vertical resulting from
the desynchronized pairing. This modulated core is surrounded by
low intensity spiral arms (yellow contours).

The vertical wavelength that shows up spontaneously is
λ/(bFh) = 0.5with a spatial variability of about 16%, in good agree-
ment with the most unstable wavelength of the zigzag instability
λ/(bFh) = 0.64 predicted by the linear stability analysis by [13].
Furthermore, the instability manifests itself even at finite ampli-
tude, as bending deformations of the vortices in agreement with
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