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a b s t r a c t

The structural sensitivity shows where an instability of a fluid flow is most sensitive to changes in
internal feedbackmechanisms. It is formed from the overlap of the flow’s direct and adjoint global modes.
These global modes are usually calculated with 2D or 3D global stability analyses, which can be very
computationally expensive. For weakly non-parallel flows the direct global mode can also be calculated
with a local stability analysis, which is orders of magnitude cheaper. In this theoretical paper we show
that, if the direct global mode has been calculated with a local analysis, then the adjoint global mode
follows at little extra cost. We also show that the maximum of the structural sensitivity is the location at
which the local k+ and k− branches have the same imaginary value. Finally, we use the local analysis to
derive the structural sensitivity of two flows: a confined co-flow wake at Re = 400, for which it works
very well, and the flow behind a cylinder at Re = 50, for which it works reasonably well. As expected, we
find that the local analysis becomes less accurate when the flow becomes less parallel.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many open flows have a steady solution to the Navier–Stokes
equations that becomes unstable above a critical Reynolds number.
Usually this instability is driven by one region of the flow, which
is called the wavemaker region. The rest of the flow merely re-
sponds to forcing from this region. The shape, linear growth rate,
and frequency of the instability can be calculated by considering
the evolution of small perturbations about the steady solution.
This is known as the direct global mode. The direct global mode
emanates from the wavemaker region and grows spatially down-
stream, reaching amaximumat the streamwise locationwhere the
spatial growth rate is zero. For example, in the case of the flow be-
hind a cylinder, this direct global mode is a sinuous flapping mo-
tion, whose nonlinear development is the familiar Kármán vortex
street [1].

The receptivity of the direct globalmode to harmonic open loop
forcing is given by the last term in Eq. (9) of Ref. [2] and Eq. (7)
of Ref. [3]. This term is proportional to the adjoint global mode,
which is calculated in the same way as the direct global mode,
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but from the adjoint (rather than direct) linearized Navier–Stokes
equations. If the perturbation magnitude is measured by the per-
turbation kinetic energy, which is the conventional approach, then
there are only two significant differences between the direct and
adjoint equations [2,4]. The first is the sign of the convection term,
Vj∂vi/∂xj, and is called convective non-normality. The second is the
appearance of a transconjugate operator, vj∂Vj/∂xi, and is called
component-type non-normality, For the flows in this paper, the
non-normality is almost entirely convective [4]. In a manner anal-
ogous to the direct global mode, the adjoint global mode emanates
from the wavemaker region but grows spatially upstream, reach-
ing a maximum at the streamwise location where the adjoint spa-
tial growth rate is zero, or when it meets the upstream boundary.
Physically, this reflects the fact that an open loop forcing signal will
have most influence on the flow if it impinges on the wavemaker
region, and if it is amplified by the flow before it does so.

The sensitivity of the direct global mode to changes in the lin-
earized Navier–Stokes (LNS) equations is given by the penultimate
term in Eq. (9) of Ref. [2]. This term is proportional to the over-
lap between the direct and adjoint global modes and is known as
the structural sensitivity. It is equivalent to the sensitivity of the
direct global mode to closed-loop feedback between the pertur-
bation and the governing equations in the special case where the
sensor and actuator are co-located. For example, in the case of the
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flow behind a cylinder, it can quantify the sensitivity of the flow
to the presence of a small control cylinder that produces a small
force on the flow in the opposite direction to the velocity pertur-
bation [5,6]. Given that the direct global mode grows downstream
of the wavemaker region and that the adjoint global mode grows
upstream, the structural sensitivity is clearlymaximal in thewave-
maker region itself. Indeed, the wavemaker region is often defined
as the position of maximum structural sensitivity, although alter-
native definitions exist [4, Section 4.2.1]. Physically, this reflects
the fact that, for a closed loop feedback mechanism to be effective,
it requires firstly that the perturbation has significant amplitude at
that point, which is quantified by the direct global mode, and sec-
ondly that the flow has significant receptivity at that point, which
is quantified by the adjoint global mode.

The above concepts were first introduced for the flow behind a
cylinder at Re = 50 by Hill [5] and Giannetti and Luchini [6,7] and
have been extended to include the sensitivity to steady forcing and
modifications to the base flow [8–10]. They have also been applied
to recirculation bubbles [11] bluff bodies, both incompressible [12]
and compressible [13], backward-facing steps [14], forward-facing
steps [15], confined wakes [16,17], and a recirculation bubble in a
swirling flow [18].

The direct global mode is usually found with a global stabil-
ity analysis. This typically proceeds in three steps: (i) the Navier–
Stokes (N–S) equations are linearized around a steady laminar
flow, which is called the base flow and which is usually unstable;
(ii) the equations are discretized and expressed as a 2D or 3D ma-
trix eigenvalue problem; (iii) the most unstable eigenmodes are
calculated with an iterative technique, such as an Arnoldi algo-
rithm or power iteration. Each eigenmode consists of a complex
eigenvalue, which describes the frequency and growth rate, and
an eigenfunction, which describes the 2D or 3D shape that grows
on top of the base flow until nonlinear effects become significant.
As more elaborate configurations are examined, the number of de-
grees of freedom rapidly approaches millions, so global stability
analyses can be extremely computationally expensive [4].

If the base flow varies slowly in the streamwise direction then
the global stability analysis can be replaced with a local stability
analysis [19]. The WKBJ approximation reduces the LNS equations
over the entire domain into a series of local LNS orOrr–Sommerfeld
(O–S) equations at each streamwise location. Each local equation
can be discretized and expressed as a small matrix eigenvalue
problem, which represents the dispersion relation between the
complex frequency, ω, and the complex wavenumber, k. At each
streamwise location, the value of ω is found for which the disper-
sion relation is satisfied and for which dω/dk = 0. This is known
as the absolute complex frequency, ω0 and its imaginary part, ω0i,
is the absolute growth rate. The flow is absolutely unstable in re-
gions in which ω0i is positive. These regions exist in every flow
that is globally unstable due to hydrodynamic feedback. The fre-
quency and growth rate of the linear global mode can be derived
from the streamwise distribution of ω0. This also gives a specific
spatial position for the region of the flow that, in the context of
the local analysis, is known as the wavemaker [20]. Local stability
analyses are much quicker and require much less computer mem-
ory than global stability analyses because they convert one large
matrix eigenvalue problem into several small independent matrix
eigenvalue problems. This is why they have been used so widely in
the past and why they are still used for flows that are beyond the
range of global analyses [21–23].

In all existing papers, the adjoint global mode is calculatedwith
a global stability analysis. The purpose of this paper is to show
that, if a local stability analysis is used to calculate the direct global
mode, then the adjoint globalmode follows at almost no extra cost.
Thismeans that, forweakly nonparallel flows, adjoint globalmodes
and structural sensitivities can be estimated quickly and cheaply,

without deriving the adjoint equations. After defining the form of
the direct and adjoint equations in Section 2, we derive this result
rigorously in Section 3 for the Ginzburg–Landau equation (G–L),
which is often used as a simplemodel for slowly-developing flows.
We then apply this to the linearized N–S equations in Section 4 and
demonstrate this on two flows in Section 5: a slowly-developing
confined wake, and the flow behind a cylinder at Re = 50.

2. General form of the direct and adjoint equations

Many different conventions are used to describe direct and ad-
joint globalmodes. The convention used here is similar to that used
for local stability analysis, so that it is easy to compare the local and
global approaches. It differs from that used in Hill [5,24] and Gian-
netti and Luchini [6] in three ways. The direct and adjoint govern-
ing equations (1) and (2) have the same form so that their k+ and
k− branches in the local analysis have the same physical meaning.
The adjoint variables are denoted with Ď, rather than + or ∗, so
that they are not confused with the k+ branch or with the complex
conjugate. The inner product contains a complex conjugate so that
the inner product of a complex state variable with itself is a real
number.

The linearized governing equations are expressed in terms of
the direct state variable,ψ(x, t), the adjoint state variable,ψĎ(x, t),
the direct linear spatial operator L, and the adjoint linear spatial
operator LĎ:

∂ψ

∂t
− Lψ = 0, (1)

∂ψĎ

∂t
− LĎψĎ

= 0. (2)

(The relationship between the direct and adjoint quantities will be
specified in (8), after the inner product (7) has been defined.) So-
lutions to the initial value problems defined by (1) and (2) can be
expressed for t ∈ [0,∞) as the sumof the direct and adjoint global
modes:

ψ(x, t) =


m

ψ̂m(x) exp(−iωmt), (3)

ψĎ(x, t) =


n

ψ̂Ď
n (x) exp(−iωnt). (4)

Substituting (3) into (1) and (4) into (2) gives, for each mode,

−iωmψ̂m − Lψ̂m = 0, (5)

−iωnψ̂
Ď
n − LĎψ̂Ď

n = 0. (6)
An inner product between state variables f and g is defined as

⟨f , g⟩ ≡


+∞

−∞

f ∗g dx. (7)

If boundary terms are assumed to be zero, as in Giannetti and Lu-
chini [6], Hill [5], then the relationship between the direct operator,
L, and its adjoint, LĎ, is given by

⟨Lψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m, LĎψ̂Ď

n ⟩. (8)
These definitions determine the relationship between ωm and ωn:

⟨Lψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m, LĎψ̂Ď

n ⟩, (9)

⟨−iωmψ̂m, ψ̂
Ď
n ⟩ = ⟨ψ̂m,−iωnψ̂

Ď
n ⟩, (10)

iω∗

m⟨ψ̂m, ψ̂
Ď
n ⟩ = −iωn⟨ψ̂m, ψ̂

Ď
n ⟩, (11)

(ω∗

m + ωn)⟨ψ̂m, ψ̂
Ď
n ⟩ = 0. (12)

This is the bi-orthogonality condition: every adjoint mode is or-
thogonal to every direct mode, except for the pairs that satisfy
ωn = −ω∗

m.
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