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a b s t r a c t

We formulate a general poromechanics model – within the framework of a two-phase mixture theory –
compatible with large strains and without any simplification in themomentum expressions, in particular
concerning the fluid flows. The only specific assumptionsmade are fluid incompressibility and isothermal
conditions. Our formulation is based on fundamental physical principles – namely, essential conservation
and thermodynamics laws – and we thus obtain a Clausius–Duhem inequality which is crucial for devis-
ing compatible constitutive laws. We then propose to model the solid behavior based on a generalized
hyperelastic free energy potential – with additional viscous effects – which allows to represent a wide
range of mechanical behaviors. The resulting formulation takes the form of a coupled system similar to
a fluid–structure interaction problem written in an Arbitrary Lagrangian–Eulerian formalism, with addi-
tional volume-distributed interaction forces. We achieve another important objective by identifying the
essential energy balance prevailing in the model, and this paves the way for further works on mathemat-
ical analyses, and time and space discretizations of the formulation.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Poromechanics has been a very active subject of research for
some decades – as shown e.g. in the survey [1] – originally mostly
motivated by civil engineering applications, see [2,3], and well-
established theories rigorously grounded in fundamental physical
and thermodynamical principles are available [4–7]. Such ap-
proaches are frequently based on the so-called ‘‘mixture theory’’,
a purely macroscopic framework in which the porous medium is
considered to be made of a superposition of solid and fluid phases
at each point – for a saturated medium to which we restrict our
attention. We note in passing that the detailed microstructure can
be considered in alternative approaches, e.g. with homogenization
procedures applied to relate the microscopic and macroscopic be-
haviors [8,9], but we do not dwell on these approaches which are
muchmore difficult to translate into effective computational mod-
eling tools.

More recently, some novel applications have brought renewed
modeling and computing challenges in the field, hence spurred
further research to circumvent various limitations of the existing
theories. In particular, potential challenging applications abound in
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biomechanics, for instance to model the blood perfusion of living
(passive or active) tissues [10–12], the circulation of gases in the
lungs [13–15], or the effect of wind on plants [16], to cite just a few
noteworthy examples in this emerging context.

In this context, in [17] a poromechanics formulation was pro-
posed with the primary motivation of describing perfusion in
the cardiac muscle. As the heart typically undergoes strains of
10%–20%, the focus of thisworkwas accordingly placed on the abil-
ity of themodel to represent large displacements and finite strains,
with general constitutive laws compatible with living tissue be-
havior [18,19]. In addition, special care was exercised to make the
proposed formulation consistent with – partial or complete – in-
compressibility of the solid and fluid constituents. However, a sig-
nificant – although quite widespread – simplification was made in
this work by totally neglecting the fluid inertia. As the coronary
arteries are known to be host to rapid blood flows with high vari-
ations during the cardiac cycle – peak flow velocity being typically
of 10–20 cm s−1 [20], i.e. similar to peak solid velocity, albeit occur-
ring at different, alternating, times – such a simplification is clearly
quite drastic, and furthermore does not allow the formulation of
discretization procedures which would preserve physical energy
balances – with the kinetic energy as one of the major contribu-
tions.

The general principles of poromechanics formulations fulfilling
fundamental conservation and thermodynamics laws have long
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been established, see in particular [4,21,22] and references therein.
However, even in a rather general framework the development of
effective formulations need also take into account the specificities
and constraints of the category of applications considered, and for
example in the above-cited pioneeringworks fluid inertia is rapidly
discarded, and the issue of deriving general constitutive laws
based on existing complex hyperelastic potentials is not addressed.
By contrast, some other poromechanics formulations taking into
account finite strains – and with or without fluid inertia – have
already been proposed, see e.g. [23–25]. However, these formula-
tions aremostly directly focused on constitutive assumptions – and
indeed pertain to specific types of constitutive behaviors – rather
than explicitly derived from the general setting of conservation and
thermodynamics principles. Hence, it is difficult to see whether
these essential principles are satisfied, and howmore general con-
stitutive behaviors can be adequately modeled within the proper
corresponding physical framework, in particular as regards energy
considerations.

The objective of the presentwork is thus twofold.We first aimat
presenting a general poromechanics theory compatible with large
strains and porous fluid flows without any simplification in the
momentumexpressions, based on fundamental physical principles
– namely, essential conservation and thermodynamics laws. In this
setting, arbitrary hyperelastic potentials can be used to represent
the skeleton behavior, and the transition between compressible
and incompressible behaviors – a key distinction in many existing
poromechanics theories – is here unified in a seamless manner.
This construction based on fundamental principles allows us to
meet a second objective, namely, to identify the essential energy
balance which must be satisfied in such formulations. This is
crucial in order to allow further mathematical analyses and the
derivation of consistently stable time and space discretization
procedures. Ourmotivation is – indeed – strongly oriented towards
computational modeling. As an example, we demonstrate the
derivation of a compatible time scheme, as the first important step
in the numerical simulation workflow. We note in passing that –
when applied to cardiac perfusion – this formulation should allow
to comparatively assess the impact of the simplifications made in
earlier works.

We should mention that our approach is clearly inspired from
the presentation of [5] – see also [26] and references therein – itself
largely based on the pioneering theory of Biot [27,28], in particular
as regards the concept of mixture considered in a thermodynamics
setting and the Lagrangian formalism attached to the solid phase.
In fact, we essentially follow the same major construction steps as
in [5], andwe herein summarize these steps both for completeness
and in order to emphasize our specific distinctions and extensions.
Namely, our main contributions thus lie in:
• the detailed generalization of this framework to nonlinear

constitutive behaviors modeled by hyperelastic potentials and
viscous effects – both in the solid and in the fluid – with
a proposed systematic construction method for introducing
these features based on general modeling ingredients already
available from solid and fluid mechanics separately, and with a
particular concern for incompressible or nearly-incompressible
behaviors on both sides;

• the incorporation of fluidmass source terms in the formulation,
these being motivated in particular by the modeling of muscle
tissue in its interaction with various blood compartments pro-
viding input and output distributed coupling conditions [17];

• establishing the relation between the resulting coupled vari-
ational formulation, and so-called ‘‘Arbitrary Lagrangian–
Eulerian’’ (ALE) formulations of fluid–structure interaction
problems [29], which paves the way for further analyses and
numerical considerations, as exemplified in a proposed time
discretization scheme.
The outline of the paper is as follows. In Section 2 we intro-

duce the notation and kinematical description, and we derive the

mass conservation laws. We then establish in Section 3 the ad-
equate principle of virtual work by invoking the conservation of
momentum. In Section 4 we obtain the energy conservation law
based on the first fundamental principle of thermodynamics, be-
fore proceeding to apply the second principle in Section 5, which
– combined with the previous results – leads to a Clausius–Duhem
inequality allowing to formulate consistent constitutive laws.
Next, in Section 6 we summarize and further analyze the govern-
ing equations of the complete model – both in strong and weak
forms – and we establish a fundamental energy balance. This leads
us to providing an example of consistent time scheme in Section 7,
before giving some concluding remarks in Section 8.

2. Notation, kinematical description and mass conservation

In this section we start by introducing the notation and kine-
matical description, and proceed to derive the mass conservation
laws.

2.1. Classical definitions and kinematical relations

We consider a deformable solid which occupies at time t the
space domainΩ(t) – denoted byΩ when there is no ambiguity –
with boundary ∂Ω(t). The total Lagrangian formulation consists in
describing the position history of each material point with respect
to a reference configuration (Ω0, ∂Ω0) – not necessarily equal to
(Ω(0), ∂Ω(0)). Thus, the deformation is a one-to-one mapping
ϕ from the reference configuration to the current configuration
providing the position of each material point in time:

ϕ :


Ω0 → R3

ξ → x = ϕ(ξ, t).

We denote by y the displacement field

y(ξ , t) = x − ξ = ϕ(ξ, t)− ξ,

and F is the deformation gradient

F(ξ , t) = ∇
ξ
ϕ = 1 + ∇

ξ
y,

such that the deformed volume is given by JdΩ where J = det F
and dΩ is the volume measure (here in the reference configura-
tion), while the deformed area vector is given by JF−T

·dS. Further-
more, we introduce the right Cauchy–Green deformation tensor
C = F T

· F . We finally recall that the local changes of geometry are
conveniently described by the Green–Lagrange strain tensor de-
noted by e and defined by

e =
1
2
(C − 1) =

1
2


∇
ξ
y + (∇

ξ
y)T + (∇

ξ
y)T · ∇

ξ
y

,

with linearized expression ε given by

ε(y) =
1
2


∇
ξ
y + (∇

ξ
y)T

.

2.2. Mixture and material derivatives

Classical two-phase poromechanics is a mixture theory in
which the material contains at each point a volume fraction φ of
fluid phase, and a remaining fraction (1 − φ) of solid phase called
the ‘‘skeleton’’. The fluid volume fractionφ is also referred to as the
‘‘porosity’’. Unless otherwise specified, we henceforth denote the
quantities specifically associated with the fluid and the skeleton
with ‘‘f’’ and ‘‘s’’ subscripts, respectively. As an exception, we will
retain all the notation introduced in the above Section 2.1 to denote
all kinematical quantities associated with the skeleton – without
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