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a b s t r a c t

The goal of thiswork is to investigate the effect of the inclusion of small surface tension on the instabilities
of periodic gravity water waves that are present even in shallow water (Deconinck and Oliveras, 2011).
Using the recent reformulation of Ablowitz, Fokas andMusslimani (2006), we compute periodic traveling
water waves where the effects of both gravity and small surface tension are incorporated. The spectral
stability of these solutions is examined using Hill’s method (Deconinck and Kutz, 2006). It is found that
the instabilities are not suppressed by the inclusion of surface tension. In fact, the growth rates associated
with them increase as the surface tension grows. Generalizing the work of MacKay and Saffman (1986),
the persistence of these instabilities is confirmed analytically for waves of small amplitude.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The classicalwaterwave problem is the problemof determining
the shape and dynamics of the free surface on an incompressible,
inviscid fluid. If, in addition, the fluid is irrotational, a velocity
potential may be introduced. For one dimensional surface waves,
the problem is described by the classical equations [1]

φxx + φzz = 0, (x, z) ∈ D,
φz = 0, z = −h, x ∈ (0, L),
ηt + ηxφx = φz, z = η(x, t), x ∈ (0, L),

φt +
1
2


φ2
x + φ2

y


+ gη

= σ
ηxx

1 + η2
x

3/2 , z = η(x, t), x ∈ (0, L),

(1)

where h is the height of the fluid, g is the acceleration due to gravity
and σ > 0 is the coefficient of surface tension.1 Further, η(x, t)
is the elevation of the fluid surface, and φ(x, z, t) is its velocity
potential. In this paper, we focus on solutions on a periodic domain
D = {(x, z) | 0 ≤ x < L, −h < z < η(x, t)}; see Fig. 1.

The work presented here follows that of Deconinck and Oliv-
eras [3]. They presented a thorough numerical overview of the
spectral instabilities of periodic traveling one-dimensional gravity
(i.e., σ = 0) water waves. An emphasis of that work is the pres-
ence of oscillatory instabilities even for waves in shallow water
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1 As noted in [2], σ > 0 for liquid–gas interfaces.

(kh < 1.363, see [4,5], here k = 2π/L). Since the underlyingwaves
are periodic, their stability analysis uses Hill’s method, see [6],
which incorporates the conclusions from Floquet’s Theorem with
Fourier analysis. This associates with each wave a range of Floquet
exponentsµwhichmaybe taken as (−π/L, π/L]. The growth rates
of the oscillatory instabilities are small, even for waves of mod-
erate amplitude, and the range of Floquet exponents with which
they are associated is narrow (on the order of 10−4 for L = 2π ).
A naive uniform distribution on (−π/L, π/L] of Floquet exponents
is bound to miss the presence of these instabilities, unless an ex-
orbitantly large number of µ values are considered. Numerically,
this is prohibitively expensive (often, no more than 100 µ-values
are chosen), and an adaptive approach is used in [3], with more
values of µ considered near those values of the Floquet expo-
nents where instabilities may arise, as predicted by MacKay and
Saffman [7].

Our goal is to investigate the effect of the inclusion of surface
tension on the oscillatory instabilities. It is well known that the in-
corporation of capillary effects leads to the presence of resonances
in the Fourier representation of the periodic travelingwaterwaves.
If the resonance condition R(σ , g, h, L) = 0 is satisfied, so-called
Wilton ripples are found [1,8]. Even when R(σ , g, h, L) ≠ 0, its
value can be made arbitrarily small by the consideration of Fourier
modes with sufficiently high wave number. This results in the
presence of small denominators in the Stokes expansion of the
wave profile. This is especially problematic for waves of moderate
or high amplitude, whose accurate Fourier representation requires
more modes. This is discussed in more detail in Sections 4 and 5.
Because of this, we limit our investigations to the instabilities of
waves of small amplitude, so that (near-) resonance is avoided.
Waves in both shallow and deep water are considered.
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Fig. 1. The domain on which we solve Euler’s equations.

In the next section we provide an overview of the literature
on this classical problem. Section 3 discusses the reformulation
of the water wave problem we use, both for the computation of
the traveling wave solutions and for the analysis of their stability.
After that, different sections are devoted to the computation
of the solutions and to the numerical investigation of their
spectral stability. In addition, we revisit the work of MacKay and
Saffman [7], which allows for an analytical prediction of which
modes may lead to instabilities. We finish with conclusions.

2. Literature overview

The study of water waves goes back as far as Newton (1687),
Euler (1761) and Bernoulli (1738) [9]. The study of water waves
benefits from theoretical contributions in addition to experimental
ones. This literature review attempts to cover the literature
that is most relevant to the current work. It is by no means
comprehensive. First, we discuss the history of the computation of
traveling wave solutions to (1). Next, we review the literature on
the investigation of their stability properties.

Stokes was the first to construct solutions to Euler’s equations
in 1847. He introduced a form for a graph of a traveling wave on
a periodic domain [10]. This was done perturbatively by adding
successive harmonics of a cosine profile. In 1880, he conjectured
there is a gravity wave of maximum height that is achieved when
the distance from crest to trough is 0.142 wavelengths [9]. The
first papers to show that series expansion in powers of the wave
amplitude (or Stokes expansions) converges were due to Nekrasov
(1921) [11] and Levi-Civita (1925) [12]. They showed that the
Stokes series convergeswhen the ratio of amplitude towavelength
is sufficiently small and the waves are in infinitely deep water.
Struik (1926) [13] extended this analysis for water of finite
depth.

Examining periodic surface gravity–capillary waves using an
expansion like the one used by Stokes,Wilton (1915) [8] computed
successive coefficients, while including the effects of surface
tension. He showed that if the coefficient of surface tension in deep
water is proportional to the inverse of an integer, the denominator
of the expansion coefficients becomes zero. Since the terms of
the series are computed only up to a scaling, he postulated that
by choosing this scaling constant proportional to the vanishing
denominator, the convergence of the series may once again be
achieved.

Following Stokes’s conjecture of a wave of greatest height for
gravity waves [10], Crapper [14] investigated the possibility of
a wave of maximum height for purely capillary waves. Using a
series expansion similar to Stokes (1957), he wrote down an exact
solution for capillary waves of arbitrary amplitude on an infinitely
deep fluid and concluded a similar result was possible for finite
depth. He found that for infinite depth, the wave of greatest height
occurs when the distance from crest to trough is 0.73wavelengths.
A good overview of results on the computation of traveling wave
solutions, including many results not discussed here, is found in
the recent monograph by Vanden-Broeck [1]. Many of the results
detailed there show the intricacies that follow from the inclusion
of surface tension.

With solutions to Euler’s equations on the periodic domain in
hand, it is important to address their stability. Phillips (1960) [15]
examined the dynamics of gravity waves on the surface of deep
water and realized thatwhen certain conditions aremet, thewaves
behave as forced, resonant oscillators which cause energy transfer
between the constituting wave trains. This work was supported
by many experimental and numerical results such as the ones by
Longuet-Higgins [16] and others. Phillips focused on a perturbation
series expansion and the conditions necessary for the higher-order
terms to satisfy the linear dispersion relation. He predicted that
resonant triads are not possible for gravity waves in deep water.
McGodrick showed that such triads are possible when surface
tension is incorporated [15]. This was followed in 1967 by the
works of Benjamin [4] andWhitham [5], who derived the criterion
that Stokes waves on sufficiently deep water, i.e., kh > 1.363 with
k = 2π/L, are modulationally unstable. For kh < 1.363, this
instability is not present.

In 1968, these efforts were followed by the seminal work of
Zakharov [17]. Starting from Euler’s equations, he showed that the
water wave problem is Hamiltonian. He wrote the energy in terms
of the canonical variables η(x, t) and q(x, t) = φ(x, η(x, t), t).
Truncating in powers of the wave amplitude, he derived what
is now called the Zakharov equation, from which the Nonlinear
Schrödinger equation easily follows. This equation describes the
dynamics of amodulationally unstablewave train and in this sense
predicts what happens after the onset of the Benjamin–Feir insta-
bility.

By linearizing around a steady state solution, a stability
eigenvalue problem is obtained whose spectrum determines the
spectral stability of that solution. By examining the collision of
eigenvalues in this spectrum, McLean (1982) [18] separated the
instabilities in two classes. Building on the numerical work of
Longuet-Higgins [19,20] and others, he obtained the maximal
growth rates for different instabilities as a function of wave
steepness. Exploiting the Hamiltonian nature of the problem [17],
MacKay and Saffman (1986) [7] established necessary criteria for
the onset of different instabilities as the amplitude of the solution
is increased, within the framework of the general theory of Krein
signatures [21]. These results are used below.

Many different ways of reformulating Euler’s equations exist,
mainly aimed at avoiding having to solve Laplace’s equation in an
unknown domain. The conformalmappingmethod is used to solve
the one-dimensional water wave problem and leads to equations
such as the ones used by Longuet-Higgins and Cokelet (1976) [16].
Another approach uses the canonical coordinates introduced by
Zakharov [17] and defines a Dirichlet-to-Neumann operator; see
Craig and Sulem (1993) [22]. Akers and Nicholls (2010) use the
‘‘Transformed Field Expansion’’ method, and they include the
effects of surface tension [23]. Since we build on the work of
Deconinck and Oliveras (2011) [3], the method most relevant to
us is the reformulation due to Ablowitz, Fokas and Musslimani
(2006) [24]. In this paper, the water wave problem is rewritten
as two coupled equations, one local and one nonlocal. Since this
is the basis for our work, this method is discussed below in some
detail. The solutions of Deconinck and Oliveras [3] are in the form
of a cosine series whose coefficients vary as the amplitude of
the solution is increased. In [3], the effects of surface tension are
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