Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short communication

Effect of support synthesis methods on structure and performance of VO_x/CeO₂ catalysts in low-temperature NH₃-SCR of NO

Thanh Huyen Vuong ^{a,b}, Jörg Radnik ^a, Matthias Schneider ^a, Hanan Atia ^a, Udo Armbruster ^a, Angelika Brückner ^{a,*}

^a Leibniz Institute for Catalysis at the University of Rostock, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany ^b School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 10000, Vietnam

ARTICLE INFO

Article history: Received 20 May 2016 Received in revised form 28 June 2016 Accepted 2 July 2016 Available online 4 July 2016

Keywords: VO_x/CeO₂ catalysts Low temperature NH₃-SCR Citrate sol-gel Preparation methods Operando-EPR Pseudo-in-situ-XPS

ABSTRACT

CeO₂ supports were prepared by a citrate (C) or a precipitation method (P) before deposition of vanadia by wet impregnation to obtain supported V/CeO₂ catalysts. The V/CeO₂-P catalyst is more active, reaching $\approx 100\%$ NO conversion and N₂ selectivity already below 225 °C at a space velocity of GHSV = 70,000 h⁻¹. XRD, UV-vis-DRS, Raman, pseudo-in-situ-XPS and operando-EPR spectroscopy revealed that this is due to higher surface area and a more effective incorporation of V sites into the support surface, which keeps them in their active valence states + 5 and +4 and prevents reduction to inactive V³⁺ as observed on V/CeO₂-C.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

V₂O₅-WO₃/TiO₂ catalysts, used for selective catalytic reduction (SCR) of NO_x in power plants, operate only at 300-500 °C which is too high for, e.g., diesel or lean-burn gasoline engines. Therefore, development of new catalysts [1,2] or improvement of vanadium-based catalysts [3,4] for low-temperature NH₃-SCR of NO_x is needed, whereby vanadia supported on (modified) ceria appeared to be particularly effective [3,5-7]. With VO_x/Ce_xZr_{1 - x}O₂, we recently reached almost full NO conversion and N₂ selectivity around 200 °C at a space velocity of GHSV = 70,000 h^{-1} [8]. This was attributed to the formation of special -O-Ce-O-V(=O)-O-Zr-O- moieties supposed to support oxygen transport. In these moieties, the V sites shuttle reversibly between V⁵⁺ and V⁴⁺ while Ce and Zr species remained essentially tetravalent. Interestingly, we found that the same amount of vanadia deposited on differently prepared CeO₂ supports leads to catalysts of rather different performance. A sensitive dependence of the performance of ceria-based catalysts on the synthesis procedure was also observed in other reactions [9-11], for which ceria was prepared by hydrothermal [12], precipitation [9,13], citrate sol-gel [10,14], solution combustion [15], or microemulsion [11] protocols. It is supposed that, depending on the synthesis protocol, oxygen vacancies and structural defects are formed that in turn influence the Ce⁴⁺/Ce³⁺ redox behavior [16,17]. However, at least in NH₃-SCR, a detailed analysis of these relations has not yet been performed. This is the aim of the present study. To this end, we compare structure-reactivity relationships of two VO_x/CeO₂ catalysts in which 5 wt.% of V₂O₅ were deposited by the same procedure on CeO₂ supports prepared by precipitation (V/CeO₂-P) or a citrate solgel method (V/CeO₂-C). Synthesis, catalytic performance and selected characterization results of the latter catalyst have already been described in our recent paper [8] and are cited here only for comparison.

2. Experimental

CeO₂ supports were prepared by a sol-gel method from citric acid and cerium nitrate (CeO₂-C) [8,14], or by precipitation from cerium nitrate in aqueous ammonia (CeO₂-P) [9]. The V/CeO₂ catalysts with a nominal content of 5 wt.% V₂O₅ were prepared by wet impregnation of the calcined CeO₂ powders with a solution of ammonium metavanadate in oxalic acid.

Catalysts were characterized by X-ray diffraction (XRD) for their crystallinity, by inductively coupled plasma optical emission spectroscopy (ICP-OES) for chemical composition, by nitrogen adsorption for BET surface area and pore properties, by X-ray photoelectron spectroscopy (XPS) for their surface properties as well as by Raman, UV-vis diffuse reflectance and electron paramagnetic resonance (EPR) spectroscopy.

^{*} Corresponding author. *E-mail address*: angelika.brueckner@catalysis.de (A. Brückner).

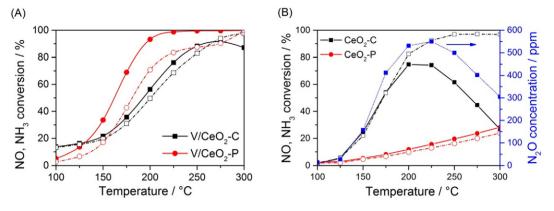


Fig. 1. NO (solid symbols and lines), NH₃ conversion (open symbols and dashed lines) over: (A) V/CeO₂-C (squares) and V/CeO₂-P (circles); (B) V-free CeO₂-C (squares) and CeO₂-P (circles); and N₂O concentration (solid squares and dotted lines) over V-free CeO₂-C as a function of temperature. Feed composition: 0.1% NO, 0.1% NH₃, 5% O₂/He, GHSV = 70,000 h⁻¹

Catalytic performance in NH₃-SCR of NO was measured between 100 and 300 °C with 100 mg catalysts and a feed composition of 0.1% NO, 0.1% NH₃, 5 vol.% O₂/He at a GHSV of 70,000 h - 1.

For more experimental details see Supporting information SI-A.

3. Results and discussion

3.1. Catalytic behavior

From Fig. 1B it is evident that already the pure supports show some activity in the catalytic reaction. While NO and NH₃ conversion is low over the whole temperature range on support CeO₂-P, sample CeO₂-C shows almost similar conversion around 200 °C as the corresponding catalyst V/CeO₂-C. However, above 200 °C undesired NH₃ combustion and N₂O formation reduce NO conversion and N₂ selectivity. Thus, both pure supports show detrimental catalytic behavior and are therefore not further considered here.

Catalyst V/CeO₂-C is much less active than V/CeO₂-P, reaching a maximum NO conversion of 90% at only 275 °C which even drops at higher temperature due to undesired oxidation of NH₃ (Fig. 1A). In contrast, V/CeO₂-P reaches full conversion already at 225 °C and remains stable. In due course, we present the results of a comprehensive characterization study to find out reasons for this different behavior.

Above 200 °C, NO conversion declines markedly and a rather high concentration of undesired N_2O is formed (Fig. 1B). In the following section, we present the results of a comprehensive characterization study of the catalysts to find out reasons for their different behavior.

3.2. Catalyst characterization

XRD patterns of both CeO₂-C and CeO₂-P supports show the characteristic peaks of the cubic fluorite structure (Fig. SI-1). They are sharper and more intense for CeO₂-C due to its larger mean crystallite size and a smaller strain derived by the Williamson-Hall equation [18] (Table 1, SI-A). The strain in CeO₂-P is about twice as high as in CeO₂-C which might promote oxygen mobility inside the support. Deposition of vanadia does not lead to any changes, indicating that highly dispersed and/or amorphous VO_x surface species dominate in both samples. However, the Raman spectra of both catalysts show some weak bands of V₂O₅ nanocrystals too small to be detectable by XRD [19] (Fig. SI-2). The bulk V/Ce atomic ratios are similar and close to the nominal value corresponding to 5% of V₂O₅ (Table 1). The BET surface area and pore volume of CeO₂-P and V/CeO₂-P are significantly higher than those of CeO₂-C and V/CeO₂-C. This might be due to the fact that the P-samples are mesoporous while the C-samples are non-porous or macroporous [20] (Fig. SI-3).

The UV-vis-DR spectra of the pure supports show bands below 250 nm, around 280 and 350 nm. The first is usually assigned to $O^{2-} \rightarrow Ce^{3+}$ charge-transfer (CT) transitions while the latter two arise from $O^{2-} \rightarrow Ce^{4+}$ CT and interband transitions (Fig. 2) [18,21]. For CeO₂-P, the intensity below 250 nm is higher suggesting a higher content of Ce³⁺ which, for maintaining electroneutrality, must create oxygen vacancies. This is supported by the fact that the absorption edge of CeO₂-P (Eg = 2.72 eV) is red-shifted compared to CeO₂-C for which Eg = 3.00 eV is close to the bulk value of CeO₂ (3,15 eV) [22], as well as by Raman data discussed below. Such red shift is caused by a drop in lattice symmetry due to increased disorder, which may result from small nanoparticles with abundant surface defects and/or replacement of Ce by other metal ions with different diameter [18,21]. It agrees with the smaller crystallite size and higher strain of CeO₂-P (Table 1).

Deposition of vanadia on these supports leads to an increase of absorbance below 400 nm, characteristic for $O^{2-} \rightarrow V^{5+}$ CT bands of VO_x single sites and small V_xO_y clusters [23]. The weak shoulder extending from 400 to 500 nm in sample V/CeO₂-C might arise from few V₂O₅ nanocrystals [24], which are evident, too, from the Raman spectra. Interestingly, a marked red shift of the absorption edge is observed for V/ CeO₂-P. One could suppose that this is due to a higher V site agglomeration in this sample, since it has been shown previously that the absorption edge energy of V_xO_y-containing oxides decreases with the number of V-O-V bridges [25]. However, the Raman spectra in Fig. SI-2 do not

Table 1

Bulk V/Ce ratio^[a], chemical composition crystallite size, specific surface area and pore volume, band gap energy of supports and catalysts.

Sample	V/Ce ratio ^[a]	Mean crystallite size ^[b] (nm)	Strain ^[b]	Surface area $(m^2 g^{-1})$	Pore volume $(cm^3 g^{-1})$	Band gap energy (eV) ^[c]
CeO ₂ -C		24.3	0.00138	12.7	0.026	3.00
CeO ₂ -P		14.1	0.00265	61.2	0.060	2.72
V/CeO ₂ -C	0.100			11.5	0.043	2.58
V/CeO2-P	0.092			45.4	0.053	2.25

^a From ICP.

^b From XRD using the Williamson-Hall equation (see SI-A).

^c From UV-vis-DRS

Download English Version:

https://daneshyari.com/en/article/6503327

Download Persian Version:

https://daneshyari.com/article/6503327

Daneshyari.com