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h i g h l i g h t s

• Formulation of multiphase mixture models of fragmentation is discussed.
• Consequences of specific constitutive choices are determined.
• Independence of large and small scale effects is investigated.
• Plug flow fragmentor closed form solutions are presented.
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a b s t r a c t

The formulation of multiphase mixture models of fragmentation is discussed. It is demonstrated that
choices of constitutive equations play a critical role in creating the independence of large and small
scale effects exhibited by some models appearing in the literature. A model of this kind is used to make
closed form plug flow fragmentor predictions which could be useful in the investigation of size class
convergence.
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1. Introduction

The work described herein was motivated by the papers of
Vallet et al. [1], Demoulin et al. [2], Beheshti et al. [3], Lebas
et al. [4], and Belhadef et al. [5] on the modeling of liquid
atomization. These papers (in slightly different ways) all treated
the gas/liquid mixture as a single fluid (mixture model) and
postulated a single evolution equation to characterize the Sauter
mean diameter (a composite drop size measure) of the atomizing
liquid. These formulations were such that the large scale problem
(determination of the mixture motion and the total liquid mass
fraction) could be solved first and the results then used to
solve the small scale problem (determination of the Sauter mean
diameter distribution). This independence of large and small
scale effects played a significant role in creating computationally
efficient liquid atomization models that did not require a detailed
knowledge of all the poorly understood aspects of the atomization
process. Comparisons with experimental data appeared to be
favorable. While the focus of [1–5] was on combustion related
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liquid atomization and based on specific special assumptions,
the general methodology employed therein of using a mixture
model is potentially applicable to a wide variety of convective
fragmentation/agglomeration processes involving solid particles,
liquid drops, or gas bubbles dispersed in a fluid. With this in mind,
the present paper discusses issues related to the extension of the
methodology of [1–5] by dividing the particle cloud into a finite
number of size classes and treating fragmentation/agglomeration
as a process of mass transfer between size classes. This modeling
procedure can be called either a multiphase continuummechanics
approach or a discrete population balance approach. The former
designation is selected herein for two reasons. First, the words
‘‘population balance’’ are often associated with the continuous
population balance approach described by Ramkrishna [6]. Second,
while multiphase continuum mechanics models can be derived
from continuous population balance models, it is not necessary
to do so. Instead they can be developed directly using only
the principles of continuum mechanics. For these reasons the
extensive literature on continuous population balance models
and the discrete population balance and moment models that
can be derived therefrom is not reviewed herein. For the
sake of definiteness only the simplest case of isothermal pure
fragmentation (mass transfer from larger to smaller size classes)
is considered below.
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There are a number ofways to implement amultiphase descrip-
tion of fragmentation ranging in complexity from mixture models
(in which one velocity vector is sufficient to describe the over-
all mixture motion) to full multiphase models (in which each size
class is assigned a separate velocity vector). A recent example of
the application of the latter kind of model to liquid atomization is
reported by Rayapati et al. [7], together with a brief taxon-
omy of multiphase models. Each type of model described in that
taxonomy exhibits a unique combination of attributes such as
ease of characterization, analytical complexity, computational in-
tensity, and ability to capture physical phenomena. For exam-
ple, mixture models involve less conservation equations than
full multiphase models. For this reason the former are both
less computationally intensive and able to capture less phys-
ical phenomena than the latter. The selection of a model for
use in a given application involves tradeoffs between model
attributes and requires engineering judgment. Information ob-
tained through thorough study of all types of multiphase mod-
els is helpful in making model selection decisions. The present
paper seeks to provide information of this kind by focusing on
an extension (as indicated above) of the mixture formulation of
[1–5] from a single evolution equation description to a multiphase
description of fragmentation and the circumstances under which
the independence of large scale and small scale effects exhibited
by the models of [1–5] can be preserved in this process. While it is
certainly not expected that mixture fragmentation models will be
appropriate in all cases, the long history of successful application
of mixture models to multiphase flow problems suggests that this
subject is worthy of investigation.

In a multiphase fragmentation model the large scale problem
remains the same as that described above while the small scale
problem becomes that of determining the individual size class
mass fractions (rather than the Sauter mean diameter). The
independence of large and small scale effects exhibited by the
models discussed in [1–5] is an inherent part of the formulations
employed in those papers. It is often desirable to preserve this
independence in multiphase fragmentation models (since it plays
a significant role in producing computational efficiency) but it
does not arise automatically therein. Instead, it must be created
by specific choices of constitutive equations. Examples of this
phenomenon will be discussed subsequently. Once constitutive
choices creating independence of large and small effects are
identified, their validity in specific applications must, of course, be
addressed on a case-by-case basis.

Some fragmentation processes produce nearly continuous
particle size spectra while others produce more discrete particle
size spectra. In both cases the issue of size class convergence
(estimating theminimumnumber of size classes needed to capture
the essence of the fragmentation process) becomes important.
While the authors intend to address thismatter in detail elsewhere,
two closed form solutions potentially useful for investigation of
size class convergence are reported below. Each is based on a
highly idealized fragmentation model and the assumption of plug
flow. The corresponding configuration will be called a plug flow
fragmentor herein, by analogy with the plug flow reactor well
known from combustion modeling. When attempting to focus
on size class convergence issues it is often helpful to simplify
other aspects of the problem. Selection of a multiphase mixture
(rather than a full multiphase) model is an example of one such
simplification.

The remaining part of this paper is organized as follows.
Section 2 discusses formulation issues. Section 3 presents closed
form plug flow fragmentor solutions. Section 4 summarizes the
foregoing work and reiterates important conclusions.

2. Formulation

There are two ways to produce a multiphase mixture model.
One (used in [1–5]) is to directly postulate that the behavior of
the multiphase system can be described with sufficient accuracy
by the balance laws for a single material. The other is to begin with
balance laws for the individual phases and derive from them the
corresponding mixture balance laws. The latter approach seems
more informative for the purpose of creating amultiphasemixture
fragmentation model and some of its elements will be reviewed
first. In this discussion the phases will be numbered 0 to M with
phase 0 being a continuous fluid and phases 1 toM being clouds of
particles (size classes).

The respective balance laws for mass and linear momentum of
each phase can be written as

∂t (ρiφi) + ∇⃗ · (ρiφiv⃗i) =

M
j=0

sij (1)

∂t (ρiφiv⃗i) + ∇⃗ · (ρiφiv⃗iv⃗i) = ∇⃗ · σ i + F⃗i +
M
j=0

F⃗ij +
M
j=0

sijv⃗ij (2)

where ρi is the i’th phase true mass density (i’th phase mass per
unit of i’th phase volume), φi is the i’th phase volume fraction (i’th
phase volume per unit of mixture volume), v⃗i is the i’th phase
velocity vector, sij is the time rate at which mass is transferred
from the j’th phase to i’th phase, σ i is the i’th phase stress tensor,
F⃗i the i’th phase body force per unit volume, F⃗ij is the force per unit
volume applied by the j’th phase to i’th phase, and v⃗ij is the velocity
characterizing mass transfer between the i’th and j’th phases. In
addition

M
i=0

φi = 1 (3)

and it will be assumed that

sij = −sji, v⃗ij = v⃗ji, F⃗ij = −F⃗ji. (4)

The respective mixture density, velocity vector, and body force
vector can be defined as

ρ =

M
i=0

ρiφi, (5)

v⃗ =

M
i=0

ρiφiv⃗i/ρ, (6)

and

F⃗ =

M
i=0

F⃗i. (7)

Summing Eqs. (1) and (2) over i and using Eqs. (4)–(7) yields the
respective mixture mass and linear momentum balances

∂tρ + ∇⃗ · (ρv⃗) = 0 (8)

and

∂t(ρv⃗) + ∇⃗ ·

M
i=0

(ρiφiv⃗iv⃗i) = ∇⃗ ·

M
i=0

σ i + F⃗ . (9)

Eliminating v⃗i in favor of the i’th phase diffusive velocity

u⃗i = v⃗i − v⃗ (10)
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