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a b s t r a c t

In this contributionwe study the spectrum of periodic traveling gravity waves on a two-dimensional fluid
of finite depth. We extend the stable and highly accurate method of Transformed Field Expansions to the
finite depth case in the presence of both simple and repeated eigenvalues, and then numerically simu-
late the changes in the spectrum as the wave amplitude is increased. We also calculate explicitly the first
non-zero correction to the flat-water spectrum, which we observe to accurately predict the stability (or
instability) for all amplitudes within the disc of analyticity of the spectrum. In addition to computations
of the spectrum, we also compute the radius of the disc of analyticity of the spectrum—the amplitude
boundary beyond which neither the asymptotics nor the TFE method is applicable. We observe an insta-
bility which is analytically connected to the flat state for kh ∈ (0.855, 1).

Published by Elsevier Masson SAS.

1. Introduction

The potential flow equations arise in a wide array of fluid me-
chanical problems, for instance, tsunami propagation, the motion
of sandbars, and pollutant transport. Traveling wave solutions of
these equations have the ability to propagate energy, momentum,
and passive scalars (e.g., pollutants) around the world’s oceans. In
this study the spectral stability of such solutions under the influ-
ence of gravity in finite depth is considered.

This problem has a rich history of both numerical and asymp-
totic investigations, and the Annual Review of Fluid Mechanics is
filledwith articles summarizing various aspects of the field (see [1]
for a particularly relevant andwell-written example). The field has
roots as early as Stokes, who first expanded periodic traveling wa-
ter waves as a function of the wave slope in 1845 [2], an approach
which has since become commonplace (see, e.g., [3–5]).

Regarding dynamic stability of these waveforms, real progress
began in the 1960s with the discovery of the Benjamin–Feir insta-
bility [6] and, of particular relevance to the current study, the am-
plitude expansions which led to the development of the Resonant
Interaction Theory (RIT) by Phillips [7] and Benney [8] (for an ex-
cellent review of the history of RIT see [9]). In RIT, the dynamics
of the solution are predicted, asymptotically in the wave slope, by
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equations for the amplitudes of a small set of resonantly interacting
frequencies, called triad or quartet equations (based on the num-
ber of frequencies in the interaction). For traveling water waves,
RIT predicts the existence and growth rates of instabilities at fre-
quencies which satisfy such interactions. Numerical studies have
computed instabilities in the neighborhood of these resonances
[10–13]. In the language of these numerical studies, the even in-
teractions (quartets, sextets, etc.) are referred to as Class I instabil-
ities while the odd interactions (triads, quintets, etc.) are referred
to as Class II instabilities. We find that an eigenvalue’s dependence
on amplitude is characterized by the type of resonant interaction
in which the eigenfunctions’ frequencies take part.

To our knowledge, all stability studies to date concerning trav-
eling wave solutions of the full water wave problem are numeri-
cal in nature. Further, almost all of these entail the linearization of
thewaterwave equations about a fixed travelingwave solution fol-
lowed by the numerical approximation of the resulting eigenvalue
problem. Please see the classic results of [14,15] and the more re-
cent computations of [16–18,13] for these ‘‘Direct Numerical Sim-
ulations’’ (DNS) of the spectral stability problem.

By contrast to the aforementioned DNS, the authors have em-
barked on an investigation of spectral stability using a rather differ-
ent philosophy. In short, the spectrum of the water wave operator
linearized about an analytic family of traveling waves is also ana-
lytic [19,20,5] (for simple eigenvalues) so that the eigenpair (λ,w)
can be expanded in the strongly convergent Taylor series

λ = λ(ε) =

∞
n=0

λnε
n, w = w(x; ε) =

∞
n=0

wn(x)εn,
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where ε is a wave height/slope parameter. These {λn, wn} have
been approximated using the stable and highly (spectrally) accu-
rate method [21] of ‘‘Transformed Field Expansions’’ (TFE) which
was used to such great effect by one of the authors with F. Re-
itich [20,5] to simulate the underlying traveling waves. We re-
fer the interested reader to [5] in particular for demonstrations of
the capabilities of the TFE approach versus other Boundary Per-
turbation Methods including its favorable operation counts, lack
of substantial numerical ill-conditioning, and applicability to large
traveling wave profiles via numerical analytic continuation.

To put the present contribution into context we summarize our
previous results:

• In [19] it was demonstrated that the spectrum of the water
wave operator linearized about periodic traveling waves is an-
alytic as a function of ε near simple eigenvalues.

• In [22] a TFE implementation of the theorem in [19] was used
to numerically study the ‘‘evolution’’ of the spectrum for two-
dimensional gravity waves in deep water. The role of singulari-
ties (in the Taylor series) in development of instability from the
simple eigenvalue case was investigated.

• In [23] some conjectures regarding singularities in the spectrum
and instability were resolved by comparing with a DNS of the
spectrum in the gravity wave case.

• In [24] the TFEmethodwas extended to include repeated eigen-
values and applied to deep-water gravity waves. RIT was used
to find candidates for the ‘‘first’’ instabilities, those which arise
at smallest wave slope.

• In [21] a rigorous numerical analysis of the TFE recursions was
studied in a wide array of contexts, including the spectral sta-
bility problem.

• In [25] the TFE approach was extended to include the effect
of surface tension. In deep water, triad instabilities were com-
puted which are analytic in amplitude for fixed Bloch parame-
ter.

In the present study we augment this line of results by:

• Extending the TFE method to the case of a fluid of finite depth.
• Computing exactly the first non-zero correction to the spec-

trum,

λ = λ0 + ε2λ2 + · · · .

• Predicting the amplitude of instabilities and eigenvalue colli-
sions using second order asymptotics.

• Estimating the radius of the disc of analyticity of the spectrum
{λ,w} = {λ(ε), w(x; ε)} from our numerical computations.

The ultimate result, the radius of the disc of analyticity, sets our
method apart from direct numerical simulations of the spectrum.
This radius highlights both the strengths andweaknesses of the ap-
proach. Boundary perturbation methods are limited in applicabil-
ity by their radius of convergence; the TFEmethod cannot compute
instabilities at amplitudes larger than this radius. Although the TFE
method cannot compute these large amplitude instabilities, it does
provide a mechanism for detecting their location, namely at the
amplitudes and Bloch parameters at which the series loses analyt-
icity [23]. The radius also gives an upper bound for the amplitude
range over which asymptotic approximations, such as those pre-
sented here, may be expected to approximate the spectrum.

It is well known that small amplitude instabilities arise from
collisions of flat state eigenvalues with opposite Krein signature
[10]. Our method computes such instabilities as a series in am-
plitude with fixed Bloch parameter. Typical instabilities occur in
bands of Bloch parameters whose width grows with amplitude
[12,17]. We compute finite amplitude instabilities within these
bands when the bands include the resonant Bloch parameters. We
also compute the locations of these bands of Bloch parameters via
the radius of convergence of our amplitude expansions. Based on

our results, we conclude that in order for a boundary perturba-
tionmethod to compute all instabilities at any finite amplitude, the
methodmust allow the Bloch parameter to vary with amplitude. If
not, only very special instabilitieswill be computable—thosewhich
occur at the same Bloch parameter at all amplitudes. An exam-
ple of such an instability is presented for kh ∈ (0.855, 1). Small
amplitude asymptotics of the spectrum of the deep-water prob-
lem with amplitude-dependent Bloch parameters are calculated
in [26]; these asymptotics are consistent with the conclusions pre-
sented here.

The paper is organized as follows: in Section 2we introduce the
water wave problem, followed by the TFE method for the spectral
stability problem in Section 2.1, and the concept of Bloch period-
icity (Section 2.2). In Section 2.3, we discuss the computation of
the leading order spectrum, which we divide into cases based on
the resonant character of the repeated eigenvalue. There are no
triad interactions for two-dimensional water waves without sur-
face tension, and we begin our discussion of degenerate quartet
resonances in Section 2.4, followed by non-degenerate quartet res-
onances in Section 2.5. In Section 3 we present our numerical re-
sults including the radius of the disc of analyticity of the spectrum,
as well as a computed instability. Conclusions and future areas of
research are discussed in Section 4.

2. Spectral stability of traveling water waves

In this work we apply a perturbative approach to the spectral
stability problem for water waves to compute the spectrum to all
orders. The leading order correction to the flat state spectrum is
exactly calculated and the general order correction is computed
numerically. Two independent formulations are used for these
computations. The exact leading order results are calculated in a
classic Taylor expansion about the mean level, similar to the mod-
els in [27,28]. For computing the general order correction, classical
Boundary PerturbationMethods have been observed to be numeri-
cally unstable in certain configurations. Consequently, we have se-
lected the Transformed Field Expansions (TFE) approach [22–24]
which executes a domain-flattening change of variables before ex-
pansion. This TFEmethod, justified analytically in [19] and, numer-
ically, in [21], will be briefly presented in the following sections.
Unlike the aforementioned classical Boundary Perturbation algo-
rithms, the TFE method is both strongly convergent and numeri-
cally stable.

The widely accepted model for the motion of waves on the sur-
face of a large body of water in the absence of surface tension or
viscosity are the Euler equations

φxx + φzz = 0, z < εη, (1a)
φz = 0, z = −H (1b)
ηt + εηxφx = φz, z = εη, (1c)

φt +
ε

2


φ2
x + φ2

z


+ η = 0, z = εη, (1d)

where η is the free-surface displacement and φ is the velocity po-
tential. These equations describe the motion of an inviscid incom-
pressible fluid undergoing an irrotational motion. System (1) has
been non-dimensionalized as in [27,24]. We assume that the wave
slope, ε = A/L, is small (A is a typical amplitude and L, the charac-
teristic horizontal length, is chosen in the non-dimensionalization
so that thewaves have spatial period 2π ). Also, the vertical dimen-
sion has been non-dimensionalized using the wavelength, so the
quantity H is non-dimensional (H = kh). As we will later use kj
for wavenumbers of eigenfunctions, we abandon the standard no-
tation kh in favor of simply H .

In this work, we simulate the spectrum using the TFE approach
of [20,22,24,25]. To describe the TFE approach, we recall the stan-
dard (see, e.g., [24]) truncation of thewaterwave domain to {−a <
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