Contents lists available at ScienceDirect

European Journal of Mechanics B/Fluids

journal homepage: www.elsevier.com/locate/ejmflu

# Statistics of vorticity alignment with local strain rates in turbulent premixed flames



School of Mechanical and Systems Engineering, Newcastle University, Claremont Road, Newcastle-Upon-Tyne, NE1 7RU, UK

#### HIGHLIGHTS

- The statistics of alignment of vorticity with local principal strain rates have been analysed.
- Effects of regime of combustion and the global Lewis number have been investigated.
- Relative alignments with local principal strain rates are affected by Damköhler and Lewis numbers.
- Detailed physical explanations have been provided for the aforementioned observed behaviours.

#### ARTICLE INFO

Article history: Received 21 May 2013 Received in revised form 22 December 2013 Accepted 6 January 2014 Available online 15 January 2014

Keywords: Vorticity Principal strain rate Direct numerical simulation Lewis number Premixed combustion

#### ABSTRACT

The instantaneous alignment of the vorticity vector with local principal strain rates is analysed for statistically planar turbulent premixed flames with different values of heat release parameter and global Lewis number spanning different regimes of combustion. It has been shown that the vorticity vector predominantly aligns with the intermediate principal strain rate in turbulent premixed flames, irrespective of the regime of combustion, heat release parameter and Lewis number. However, the relative alignment of vorticity with the most extensive and compressive principal strain rates changes based on the underlying combustion conditions. Detailed physical explanations are provided for the observed behaviours of vorticity alignment with local principal strain rates. It has been shown that heat release due to combustion significantly affects the alignment of vorticity with local principal strain rates. However, the relative for all cases considered here, irrespective of the nature of the vorticity alignment.

© 2014 Elsevier Masson SAS. All rights reserved.

### 1. Introduction

The alignment of the vorticity vector with local principal strain rates is of fundamental importance for the understanding and modelling of turbulent fluid motion, as the alignment statistics directly affect the nature of the vortex-stretching mechanism [1]. It has been demonstrated in several previous studies that the vorticity vector instantaneously aligns with the intermediate eigenvector of strain rate tensor for non-reacting turbulence [2–12]. However, relatively limited attention was given to the analysis of alignment of vorticity with local strain rates in the case of turbulent reacting flows [13–15]. In many applications (e.g. Spark Ignition (SI) engines and industrial gas turbines), the fuel and oxidiser are homogeneously mixed prior to the combustion process (i.e. premixed combustion). Thus, the understanding of vorticity alignment with local principal strain rates is of fundamental interest for the development of high-fidelity models which can, in turn, contribute

\* Tel.: +44 0191 208 3570; fax: +44 0191 208 8600. *E-mail address:* nilanjan.chakraborty@newcastle.ac.uk.

to the design of new generation energy-efficient and environmentfriendly combustion devices. The analysis of Nomura and Elghobashi [13], Boratov et al. [14] and Jaberi et al. [15] concentrated on vorticity alignment with local principal strain rates for non-premixed flames where fuel and oxidiser are completely separated from each other prior to the combustion process. Recently, Hamlington et al. [16] analysed vorticity statistics in premixed combustion based on numerical solutions of reactive systems. The analysis by Nomura and Elghobashi [13] demonstrated that the vorticity vector aligns with the intermediate principal strain rate in non-premixed flames similar to non-reacting turbulent flows but vorticity in non-premixed flames shows appreciable probabilities of local alignment with the most extensive principal strain rate. The analysis by Boratov et al. [14] on non-premixed flame DNS data reveals that the extent of vorticity alignment with the most extensive principal strain rate increases in the regions where the magnitude of strain rate dominates over the vorticity magnitude. By contrast, vorticity shows preferential alignment with the intermediate principal strain rate in the regions where the vorticity magnitude dominates over the strain rate magnitude. The analysis by Jaberi et al. [15] further demonstrated that the alignment of







<sup>0997-7546/\$ –</sup> see front matter © 2014 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.euromechflu.2014.01.002

Jaberi et al. [15] showed that vorticity remains mostly perpendic-

| VableValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValue <th< th=""><th>Nomenc</th><th>lature</th><th><math>egin{array}{c} x_i \ Y_R \end{array}</math></th><th><i>i</i>th Cartesian co-ordinate<br/>Reactant mass fraction</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nomenc                            | lature                                                           | $egin{array}{c} x_i \ Y_R \end{array}$ | <i>i</i> th Cartesian co-ordinate<br>Reactant mass fraction       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|
| Acoustic velocity<br>GramReaction introl<br>CompositionTangential strain rate<br>in the wave associated with boundary<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arabic                            |                                                                  | Y <sub>R0</sub>                        | Reactant mass fraction in unburned gases                          |
| $ \begin{array}{c} \label{eq:constraints} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a                                 | Acoustic valacity                                                | IRX                                    | Reactant mass naction in fully burned gases                       |
| Turbulent straining verticular letters<br>Turbulent straining verticular letters<br>Targential strain rate<br>Targential strain rate<br>Targential factor<br>Pre-exponential factor<br>Reaction progress variable<br>fame surface<br>progress variable dilusivity<br>Danköhler number<br>progress variable strain rate<br>progress variable                                                                                                                                                                                                                                                                                                                                      | и<br>Л.,                          | Strain rate induced by chemical reaction                         | Greek                                  |                                                                   |
| Tangential strain rate<br>Tangential strain rate<br>The exception progress variable<br>Reaction progress variable<br>Reaction progress variable diversemential factor<br>Reaction factor associated with eigenvalues $e_{\alpha}$ , $e_{\alpha}$<br>Ratio factor associated with eigenvalues $e_{\alpha}$ , $e_{\alpha}$<br>Ration factor associated with eigenvalues $e_{\alpha}$ , $e_{\alpha}$<br>Ration factor associated with it wave and<br>ration factor associated vith it wave<br>ration factor associated                                                                                                                                                                                                                                                                                                                                                   | а <sub>спет</sub><br>Пышь         | Turbulent straining                                              |                                        |                                                                   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | α <sub>turb</sub><br>Πτ           | Tangential strain rate                                           | $\alpha_H$                             | Heat release parameter                                            |
| pricesponential factorprincipal strain rateNormalised pre-exponential factor $\alpha_p$ Angle between pressure gradient and theReaction progress variable $\alpha_p$ Angle between vorticity and the interprogress variable diffusivity $\beta$ Angle between vorticity and the most compprogress variable diffusivity $\beta$ Angle between vorticity and the most compprogress variable diffusivity $\gamma$ Angle between vorticity and the most compprogress variable diffusivity $\gamma$ Angle between vorticity and the most compprincipal strain rate $\beta$ Angle between vorticity and the most compprincipal strain rate ensor $\gamma$ Angle between pressure gradient and the $\gamma$ $\gamma$ Angle between pressure gradient and the $\gamma$ $\gamma$ Angle between pressure gradient and the $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A:                                | ith wave associated with boundary                                | α                                      | Angle between vorticity and the most extensive                    |
| pNormalised pre-exponential factorpAngle between pressure gradient and theReaction progress variableAll the interprincipal strain rateReaction progress variableAngle between vorticity and the interprincipal strain ratepAngle between pressure gradient and the inpAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between vorticity and the most compressive principal strain ratepAngle between pressurepAngle between vorticity and the most compressive principal strain ratepAngle between pressurepAngle between vorticity and the most compressive prin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                                 | Pre-exponential factor                                           |                                        | principal strain rate                                             |
| Reaction progress variableextensive principal strain rate ${}^{2}$ Reaction progress variable value indicating the<br>flame surface ${}^{2}$ ${}^{2}$ Specific heat capacity at constant pressure<br>synchic heat capacity at constant volume<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Specific heat capacity at constant volume<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Darkhifter number ${}^{2}$ ${}^{2}$ Darkhifter number ${}^{2}$ ${}^{2}$ Most extensive principal strain rate<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Component of strain rate tensor<br>${}^{2}$ , ${}^{2}$ , ${}^{2}$ , ereperctors associated with eigenvalues $e_{\alpha}, e_{\beta}$<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Activation energy<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Activation energy<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Terms involving viscosity gradients in the vorticity<br>transport equation<br>${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ Terms involving viscosity gradients in the corticity<br>transport equation<br>${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ Thermal conductivity<br>${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Tenston of flame normal vector<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ ${}^{2}$ Thermal conductivity<br>${}^{2}$ ${}^{2}$ ${}^{3}$ The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B*                                | Normalised pre-exponential factor                                | $\alpha_p$                             | Angle between pressure gradient and the mos                       |
| $\beta$ Angle between vorticity and the interprincipal strain rate $β$ Angle between vorticity and the interprincipal strain rate $β$ Angle between vorticity and the interprincipal strain rate $β$ Most stensive principal strain rate $β$ Most stensive principal strain rate $φ$ Most stensive principal strain rate $φ$ Compressive principal strain rate $φ$ Component of strain rate tensor $η$ $φ$ $φ$ Component of strain rate tensor $η$ $φ$ $φ$ $φ$ $φ$ Terms involving viscosity gradients in the vorticity $φ$ Terms involving viscosity gradients in the enstrophy $φ$ Target value of flame normal vector $φ$ Target value of non-dimensional temperature $φ$ Turbulent Reynolds number $φ$ Turbulent Reynolds number $φ$ Turbulent Reynolds number $φ$ Target value of non-dimensional temperature $φ$ Molongorov time scale $φ$ Sumbol $φ$ <t< td=""><td>c</td><td>Reaction progress variable</td><td></td><td>extensive principal strain rate</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c                                 | Reaction progress variable                                       |                                        | extensive principal strain rate                                   |
| Tame surface and event of the form of the surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>c</i> *                        | Reaction progress variable value indicating the                  | β                                      | Angle between vorticity and the intermediate                      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | flame surface                                                    | _                                      | principal strain rate                                             |
| jSpecific heat capacity at constant volumejProgress variable diffusivityDaDamköhler numberjDamköhler numberjDamköhler numberjMost extensive principal strain ratejIntermediate principal strain ratejPrincipal strain ratejPrincipal strain ratejPrincipal strain ratejPrincipal strain ratejComponent of strain rate tensorji. Thermal conductivityiTerms involving viscosity gradients in the vorticityiTerms involving viscosity gradients in the enstrophy<br>transport equationjTerms involving viscosity gradientsiThoreal conductivityiAcomymeterjConcel agaantiyjPressurejTarget value of pressure at the boundaryjTarget value of non-dimensional temperature<br>i<br>the component of fluid velocity<br>tijDimensi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C <sub>P</sub>                    | Specific heat capacity at constant pressure                      | $\beta_p$                              | Angle between pressure gradient and the interme                   |
| $ \begin{array}{c} \beta \\ D Dark Mohler number \\ Progress variable diffusivity \\ D Dark Mohler number \\ Most extensive principal strain rate \\ Intermediate principal strain rate \\ Promodel in the principal strain rate \\ $                                                                                                                                                                                                                                                                                                                                                                                                      | $\dot{C_V}$                       | Specific heat capacity at constant volume                        | _                                      | diate principal strain rate                                       |
| $D_{a}$ Damköhler number $\gamma$ Angle between vorticity and the most comp $V_{a}$ Most extensive principal strain rate $\gamma$ Angle between vorticity and the most comp $V_{a}$ Most extensive principal strain rate $\gamma$ Angle between vorticity and the most comp $V_{a}$ Most extensive principal strain rate $\gamma$ $V_{a}$ Principal strain rate $\gamma$ $V_{a}$ $V_{a}$ Angle between vorticity and the most comp $V_{a}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                                 | Progress variable diffusivity                                    | $\beta_Z$                              | Zel'dovich number                                                 |
| $ \begin{array}{c} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Da                                | Damköhler number                                                 | γ                                      | Angle between vorticity and the most compressive                  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e_{\alpha}$                      | Most extensive principal strain rate                             |                                        | principal strain rate                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $e_{\beta}$                       | Intermediate principal strain rate                               | $\gamma_p$                             | Angle between pressure gradient and the mos                       |
| $ \begin{aligned}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e_{\gamma}$                      | Most compressive principal strain rate                           |                                        | compressive principal strain rate                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e_{\theta}$                      | Principal strain rate                                            | γ <sub>G</sub>                         | Ratio of specific heat capacities                                 |
| $ \begin{aligned} \lambda_{1}, \hat{e}_{2}, \hat{e}_{3}  \text{Eigenvectors associated with eigenvalues } e_{\alpha}, e_{\beta} \\ \text{and } e_{\gamma} \text{ respectively} \\ \hline \\ \lambda_{1}, \tilde{e}_{2}, \hat{e}_{3}  \text{Eigenvectors associated with eigenvalues } e_{\alpha}, e_{\beta} \\ \hline \\ \lambda_{2}  \text{Terms involving viscosity gradients in the vorticity transport equation \\ \text{transport equation } \\ \hline \\ \lambda_{2}  \text{Terms involving viscosity gradients in the enstrophy transport equation \\ \text{transport equation } \\ \hline \\ \lambda_{3}  \text{Terms involving viscosity gradients in the enstrophy transport equation \\ \text{transport equation } \\ \hline \\ \lambda_{4}  \text{Terms involving viscosity gradients in the enstrophy transport equation \\ \text{transport equation } \\ \hline \\ \lambda_{5}  \text{Terms involving viscosity gradients in the enstrophy transport equation \\ \text{transport equation } \\ \hline \\ \lambda_{5}  \text{Terms involving viscosity gradients in the enstrophy transport equation \\ \text{transport equation } \\ \hline \\ \lambda_{5}  \text{Terms involving viscosity gradients in the enstrophy transport equation \\ \text{transport equation } \\ \hline \\ \lambda_{5}  \text{Termal conductivity } \\ \hline \\ \lambda_{6}  \text{Chemical flame normal vector } \\ \hline \\ \phi_{1}  \text{Trategr value of pressure at the boundary } \\ \hline \\ \phi_{1}  \text{Trategr value of pressure at the boundary } \\ \hline \\ \phi_{1}  \text{Trategr value of pressure at the boundary } \\ \hline \\ \phi_{1}  \text{Initial turbulent equolus number } \\ \hline \\ \phi_{2}  \text{Toulent Reynolds number } \\ \hline \\ \phi_{3}  \text{Chemical time scale } \\ \hline \\ \phi_{1}  \text{Initial turbulent eddy turnover time } \\ \hline \\ \phi_{1}  \text{Initiat turbulent edg turnover time } \\ \phi_{1}  \text{Initiat turbulent edg turnover time } \\ \phi_{1}  \text{Target value of non-dimensional temperature } \\ \phi_{1}  \text{Target value of fluid velocity } \\ \hline \\ \phi_{2}  \text{Dimensional temperature } \\ \phi_{1}  \text{Target value of fluid velocity } \\ \phi_{1}  \text{Target value of fluid velocity } \\ \phi_{1}  \text{Target value of fluid velocity } \\ \hline \\ \phi_{2}  \text{Dimensional temperature } \\ \phi_{1}  \text{Target value of fluid velocity } \\ \phi_{1}  \text{Target value of fluid velocity } \\ \phi_{1}  \text{Target value of fluid velocity } \\ \phi_{1}  Target value of$ | e <sub>ij</sub>                   | Component of strain rate tensor                                  | $\delta_{th}$                          | Thermal flame thickness                                           |
| and $e_{\gamma}$ respectively $\eta$ Kolmogorov length scale $\lambda$ Activation energy $\lambda$ Terms involving viscosity gradients in the vorticitytransport equation $\lambda$ $\lambda$ Thermal conductivity $\lambda_i$ Thermal conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\hat{e}_1, \hat{e}_2, \hat{e}_3$ | Eigenvectors associated with eigenvalues $e_{\alpha}, e_{\beta}$ | $\Delta$                               | DNS grid spacing                                                  |
| $\lambda_{\rm c}$ Activation energy<br>Terms involving viscosity gradients in the vorticity<br>transport equation $\lambda_{\rm c}$ Thermal conductivity<br>$\lambda_{\rm c}$ $\lambda_{\rm c}$ Terms involving viscosity gradients in the enstrophy<br>transport equation $\lambda_{\rm c}$ Wave velocity associated with ith wave an<br>variation $L_{\mu}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ Wave velocity associated with ith wave an<br>variation $L_{\mu}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ Wave velocity associated with ith wave an<br>variation $L_{\mu}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ Wave velocity associated with ith wave an<br>variation $L_{\mu}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ Wave velocity associated with ith wave an<br>variation $L_{\mu}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ Wave velocity associated with ith wave an<br>variation $L_{\mu}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ Wave velocity associated with ith wave an<br>variation $L_{\mu}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ $\lambda_{\rm c}$ $\lambda_{\rm c}$ Thermal conductivity $\lambda_{\rm c}$ $\lambda_{\rm c}$ $\lambda_{\rm c}$ the averaget value of nor-dimensional temperature<br>time<br>the oundary $\lambda_{\rm c}$ $\lambda_{\rm c}$ $\gamma_{\rm r}$ Target value of ind component of fluid velocity<br>time<br>time<br>the oundary $\lambda_{\rm c}$ $\lambda_{\rm c}$ $\lambda_{\rm c}$ Wave velocity associated with ith wave<br>at a diabatic flame tene temperature<br>time<br>the oundary $\lambda_{\rm c}$ $\lambda_{\rm c}$ $\lambda_{\rm r}$ Malabit flame temperature<br>time<br>the oundary $\lambda_{\rm c}$ $\lambda_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | and $e_{\gamma}$ respectively                                    | η                                      | Kolmogorov length scale                                           |
| iTerms involving viscosity gradients in the vorticity<br>transport equation<br>transport equationWave velocity associated with ith wave an<br>variation $L_i$ iTerms involving viscosity gradients in the enstrophy<br>transport equationAVortex-stretching term<br>$\mu$ jTerms involving viscosity gradients in the enstrophy<br>transport equationAVortex-stretching term<br>$\mu$ jTerms involving viscosity gradients in the enstrophy<br>transport equationAVortex-stretching term<br>$\mu$ jTerms involving viscosity gradients in the enstrophy<br>transport equationAVortex-stretching term<br>$\mu$ jTerms involving viscosity gradients in the enstrophy<br>transport equationAVortex-stretching term<br>$\mu$ jTerms involving viscosity gradients in the enstrophy<br>int component of flame normal vectorPAnglejTerget value of pressure at the boundary<br>Time<br>Conduction heat flux in the ith direction<br>Conduction time<br>fTerms involving viscosity of the unburned gas<br>Component of viscous stress<br>Conduction heat flux in the ith direction<br>Conduction time<br>fTerms involving viscosity of the unburned gas<br>Component of viscous stress<br>Conduction heat flux in the ith direction<br>Conduction inme<br>fTerms involv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E <sub>ac</sub>                   | Activation energy                                                | λ                                      | Thermal conductivity                                              |
| $ \begin{array}{c} \mbox{transport equation} \\ transport equati$                                                                                                                                                                                                                                                                                                                                                                                             | $f_1$                             | Terms involving viscosity gradients in the vorticity             | $\lambda_i$                            | Wave velocity associated with <i>i</i> th wave amplitude          |
| $\lambda$ Vortex-stretching term $\lambda$ Vortex-stretching term $\lambda$ <td></td> <td>transport equation</td> <td></td> <td>variation L<sub>i</sub></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | transport equation                                               |                                        | variation L <sub>i</sub>                                          |
| $\begin{array}{cccc} \mu & Dynamic viscosity \\ \mu_0 & Dynamic viscosity \\ \mu_1 & Dyna$                                                                                                                                                                                                                   | $f_2$                             | Terms involving viscosity gradients in the enstrophy             | Λ                                      | Vortex-stretching term                                            |
| $\alpha$ Thermal conductivity $\mu_0$ Dynamic viscosity of the unburned gas $\alpha$ Karlovitz number $\mu_0$ Dynamic viscosity of the unburned gas $\alpha$ ith wave amplitude variation $\theta$ Angle $i$ ith wave amplitude variation $\varphi_2$ Function of Lewis number related to $\partial u_i / \partial x$ $\psi_1$ ith component of flame normal vector $\varphi_2$ Function of Lewis number related to $\partial u_i / \partial x$ $\phi_1$ Target value of pressure at the boundary $\varphi_2$ Function of Lewis number related to $\partial u_i / \partial x$ $\gamma^{Pq}$ Target value of pressure at the boundary $\varphi_1$ Inburned gas density $\gamma^{Pq}$ Target value of pressure at the direction $\tau$ Heat release parameter $\tau_1$ Conduction heat flux in the ith direction $\tau$ Heat release parameter $\tau_1$ Turbulent Reynolds number $\tau$ Heat release parameter $\tau_1$ Turbulent Reynolds number $\omega_1$ $\omega_1$ $\omega_1$ $\tau_1$ Itital turbulent eddy turnover time $\omega_1$ itital turbulent eddy turnover time $\sigma_1$ Nolmogorov time scale $\lambda_1$ $\tilde{B}$ $\eta$ Kolmogorov time scale $\lambda_2$ Ensemble averaged values of a general quation $\tau_1$ Target value of fluid velocity $\tau_1$ $\tilde{B}$ $\tau_1$ Target value of fluid velocity $\tau_1$ $\tau_1$ Target value of fluid velocity $\tau_2$ Ensemble averaged Navier-Stokes $\eta$ Nondary $\varphi$ Direct Numerical Simulation $\chi_1^{Pq}$ Target value of th component of fluid velocity <td></td> <td>transport equation</td> <td><math>\mu</math></td> <td>Dynamic viscosity</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | transport equation                                               | $\mu$                                  | Dynamic viscosity                                                 |
| $\alpha$ Karlovitz numberIntegral length scaleii th wave amplitude variationii th wave amplitude variation $\varphi_1$ $ii$ th wave amplitude variation $\varphi_2$ $iii$ th wave amplitude variation $\varphi_2$ $iiiiii th wave amplitude variation\varphi_2iiii th wave amplitude variation\varphi_1iiiii th wave amplitude variation\varphi_2iiii th wave amplitude variation\varphi_1iiii th wave amplitude variation\varphi_1iii th wave amplitude variation\varphi_2iiii th wave amplitude variation\varphi_1iii th wave amplitude variation\varphi_1iii th wave amplitude variation\varphi_2iiii th wave amplitude variation\varphi_2iiii th wave amplitude variation\varphi_2iiii th wave amplitude variation\varphi_1iii th wave amplitude variation\varphi_1iii th wave amplitude variation\varphi_1iii th wave amplitude variation\varphi_2iii th wave amplitude variation\varphi_2iii th wave amplitude variation\varphi_2iiii th wave amplitude variation$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k                                 | Thermal conductivity                                             | $\mu_0$                                | Dynamic viscosity of the unburned gas                             |
| Integral length scaleiith wave amplitude variationiith wave amplitude variationiith component of flame normal vectorpressurepreferTarget value of pressure at the boundarypPressurepreferTarget value of pressure at the boundarypPrandtl numberpConduction heat flux in the ith directionloDiffusive mass flux in the ith directionloDisplacement speediUnstrained laminar burning velocityrimeSimulation timegKolmogorov time scalegKolmogorov mescalemaget value of ind-dimensional temperaturedAdiabatic flame temperaturedTarget value of int component of fluid velocitytreffTarget value of ith component of fluid velocitytreffTarget value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ка                                | Karlovitz number                                                 | $\theta$                               | Angle                                                             |
| $i_{i}$ ifth wave amplitude variation $i_{i}$ ifth wave amplitude variation $i_{i}$ Lewis number $i_{i}$ Lewis number $i_{i}$ ifth component of flame normal vector $p^{req}$ Target value of pressure at the boundary $p^{req}$ Diffusive mass flux in the ith direction $Q_{i}$ Diffusive mass flux in the ith direction $Q_{i}$ Displacement speed $i_{i}$ Displacement speed $i_{i}$ Unstrained laminar burning velocity $Time$ Chemical time scale $q$ Non-dimensional temperature $i_{i}$ Kolmogorov time scale $q$ Non-dimensional temperature $i_{i}$ Target value of non-dimensional temperature $i_{i}$ Target value of non-dimensional temperature $i_{i}$ Target value of ith component of fluid velocity $i_{i}$ Root mean square turbulent velocity fluctuation<br>magnitude $i_{i}$ Velocity vector $i_{i}$ Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                 | Integral length scale                                            | $\varphi_1$                            | Function of Lewis number related to <i>a<sub>chem</sub></i>       |
| $e$ Lewis number $w_i$ ith component of flame normal vector $v_i$ ith component of flame normal vector $p^{reg}$ Target value of pressure at the boundary $p^{reg}$ Target value of non-dimensional temperature $q_i$ Unstrained laminar burning velocity $p_i$ Kolmogorov time scale $q$ Non-dimensional temperature $q_{reg}$ Target value of non-dimensional temperature $q_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid velocity $p_{reg}^{reg}$ Target value of ith component of fluid veloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L <sub>i</sub>                    | ith wave amplitude variation                                     | $\varphi_2$                            | Function of Lewis number related to $\partial u_i / \partial x_i$ |
| $\gamma_{i}$ fit component of flame normal vector<br>$\gamma_{i}$ Pressure<br>$\gamma_{i}$ Target value of pressure at the boundary<br>$\gamma_{r}$ Prandt number<br>$\gamma_{r}$ Prandt number<br>$\gamma_{r}$ Prandt number<br>$\gamma_{r}$ Prandt number<br>$\gamma_{r}$ Conduction heat flux in the <i>i</i> th direction<br>$\gamma_{r}$ Heat release parameter<br>$\tau_{ij}$ Components of viscous stress<br>$\omega_{i}$ ith component of vorticity<br>$\gamma_{i}$ Kolmogorov time scale<br>$\gamma_{i}$ Kolmogorov time scale<br>$\gamma_{i}$ Adiabatic flame temperature<br>$\gamma_{i}$ Adiabatic flame temperature<br>$\gamma_{i}$ ith component of fluid velocity<br>$\gamma_{i}$ Target value of ith component of fluid velocity<br>$\gamma_{i}$ Root mean square turbulent velocity fluctuation<br>$\gamma_{i}$ Kolmogorov velocity scale<br>$\gamma_{i}$ Kolmogorov velocity scale                                                            | Le                                | Lewis number                                                     | ρ                                      | Gas density                                                       |
| $\sigma_i$ Relaxation factor associated with ith wave<br>tude variation $\sigma_i$ Relaxation factor associated with ith wave<br>tude variation $\gamma$ Prandtl number $\eta_i$ Conduction heat flux in the ith direction $Q_i$ Diffusive mass flux in the ith direction $Q_i$ Diffusive mass flux in the ith direction $Q_i$ Ceneral quantity $Q_i$ Components of viscous stress $Q_i$ Displacement speed $Q_i$ Unstrained laminar burning velocity $T_{ime}$ Chemical time scale $f$ Initial turbulent eddy turnover time $sim$ Simulation time $\eta_i$ Kolmogorov time scale $\eta_i$ Kolmogorov time scale $\eta_i$ Adiabatic flame temperature $\sigma_i$ Adiabatic flame temperature $\sigma_i$ Target value of non-dimensional temperature $\sigma_i$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Target value of ith component of fluid velocity $t_i^{req}$ Non-ginerisonal temperatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N <sub>i</sub>                    | ith component of flame normal vector                             | $ ho_0$                                | Unburned gas density                                              |
| $D^{eq}$ Target value of pressure at the boundarytude variation $Triper Prandtl numberTHeat release parameterT_{in}Conduction heat flux in the ith directionTHeat release parameterT_{ij}Components of viscous stress\omega_iith component of vorticityQGeneral quantity\overline{\omega}Vorticity vectorG_{in}Displacement speed\overline{\omega}_iith component of vorticityT_{ime}QEnsemble averaged values of a general quare conditionally averaged in bins of c valuesfInitial turbulent eddy turnover timeSymbolgEnsemble averaged values of a general quare conditionally averaged in bins of c valuesgNon-dimensional temperatureQT_{req}Target value of non-dimensional temperatureDNST_{req}Target value of inno-dimensional temperatureDimensional temperatureT_{req}Target value of ith component of fluid velocityThe intermediate (most extensive) princT_{req}Target value of ith component of fluid velocity at theboundaryVorticity with the intermediate (most extensive) princrate decreases (increases) due to chemical heat releasepremixed flames. It is worth nothing that the analysiset al. [15] was carried out for constant volume homogebulence but their findings were found to be qualitativelythe results by Nomura and Elghobashi [13] for non-premi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p<br>rea                          | Pressure                                                         | $\sigma_i$                             | Relaxation factor associated with ith wave ampli                  |
| $T$ Prandu number<br>Prandu number<br>Trime<br>Conduction heat flux in the <i>i</i> th direction<br>Diffusive mass flux in the <i>i</i> th direction<br>$\Omega$ $\tau$ Heat release parameter<br>$\tau_{ij}$ $Q$ Components of viscous stress<br>$\omega_i$ $\omega_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p <sup>req</sup>                  | larget value of pressure at the boundary                         |                                        | tude variation                                                    |
| IftConduction heat flux in the intraficulationIftConduction heat flux in the intraficulationIftDiffusive mass flux in the intraficulationIftGeneral quantityRetTurbulent Reynolds number $d_d$ Displacement speed $u_i$ Unstrained laminar burning velocityTime $\Omega$ chemChemical time scalefInitial turbulent eddy turnover time $f_m$ Non-dimensional temperature $f_m$ Non-dimensional temperature $f_m$ Adiabatic flame temperature $f_m$ Target value of non-dimensional temperature $f_m$ Target value of fluid velocity $f_m$ Target value of ith component of fluid velocity $f_m$ Target value of ith component of fluid velocity $f_m$ Non-dimens square turbulent velocity fluctuation<br>magnitude $f_m$ Velocity vector $f_m$ Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PT<br>G                           | Pranati number                                                   | τ                                      | Heat release parameter                                            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | q <sub>Ti</sub>                   | Diffusive mass flux in the <i>i</i> th direction                 | $	au_{ij}$                             | Components of viscous stress                                      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | q <sub>Ci</sub>                   | Concerned quantity                                               | $\omega_i$                             | ith component of vorticity                                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q<br>Ra                           | General qualitity                                                | ω                                      | Vorticity vector                                                  |
| $M_{d}$ Displacement speed $G_L$ Unstrained laminar burning velocity $G_L$ Unstrained laminar burning velocity $G_L$ Time $Chemical time scale(Q)fInitial turbulent eddy turnover timesimSimulation timeg_1Kolmogorov time scaleTNon-dimensional temperatureT_{ad}Adiabatic flame temperatureT_{ad}Adiabatic flame temperatureT_{ad}Adiabatic flame temperatureT_{ad}Adiabatic flame temperatureT_{ad}Adiabatic flame temperatureT_{ad}Dimensional temperatureT_{ad}Dimensional temperaturet_iith component of fluid velocityt_iTarget value of ith component of fluid velocity at theboundaryt_iRoot mean square turbulent velocity fluctuationmagnitudet_iVelocity vectort_nVelocity vectort_nVelocity vectort_nVolumet_nVolume$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ke <sub>t</sub>                   | Displacement speed                                               | $\Omega$                               | Enstrophy (i.e. $\Omega = \omega_i \omega_i/2$ )                  |
| Symbol<br>Time<br>Time<br>Chemical time scale<br>f Initial turbulent eddy turnover time<br>Simulation time<br>$\eta$ Kolmogorov time scale<br>To Unburned gas temperature<br>$T_{ad}$ Adiabatic flame temperature<br>Target value of non-dimensional temperature at the<br>boundary<br>Dimensional temperature<br>$T_{ad}$ Adiabatic flame temperature<br>$T_{ad}$ Acronyms<br>DNS Direct Numerical Simulation<br>LES Large Eddy Simulation<br>RANS Reynolds Averaged Navier-Stokes<br>vorticity with the intermediate (most extensive) prince<br>rate decreases (increases) due to chemical heat release<br>premixed flames. It is worth nothing that the analysis<br>et al. [15] was carried out for constant volume homogee<br>bulence but their findings were found to be qualitatively<br>the results by Nomura and Elghoba                                                                                                                                                                                                                                                                                                                                                         | Sd<br>S                           | Unstrained laminar burning volocity                              | <b>C</b> 1 1                           |                                                                   |
| Initial<br>chemChemical time scale<br>fInitial turbulent eddy turnover time $f$ Initial turbulent eddy turnover time $sim$ Simulation time<br>sim $sim$ Simulation time<br>$m$ $g$ Kolmogorov time scale<br>r $r$ Non-dimensional temperature<br>$T_{ad}$ $r$ Adiabatic flame temperature<br>$T_{ad}$ $req$ Target value of non-dimensional temperature<br>treq $rreq$ Target value of non-dimensional temperature<br>tith component of fluid velocity<br>$t_1^r$ $t_1^req$ Target value of ith component of fluid velocity the<br>boundary $k$ Dimensional temperature<br>tithe<br>to anganitude $t_1^req$ Target value of ith component of fluid velocity fluctuation<br>magnitude $t_1^req$ Root mean square turbulent velocity fluctuation<br>magnitude $t_1^req$ Not mean square turbulent velocity fluctuation<br>magnitude $t_1^req$ Kolmogorov velocity scale $t_1^req$ Kolmogorov velocity scale $t_1^req$ Velocity vector $t_1^req$ Nom dimensional temperature<br>tith component of fluid velocity fluctuation<br>magnitude $t_2^req$ Kolmogorov velocity scale $t_1^req$ Nom scarried out for constant volume homoge<br>bulence but their findings were found to be qualitatively<br>the results by Nomura and Elghobashi [13] for non-premi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5[<br>t                           | Time                                                             | Symbol                                 |                                                                   |
| chemCitial turbulent eduy turnover time $f$ Initial turbulent eduy turnover time $sim$ Simulation time $sim$ Simulation time $g$ Kolmogorov time scale $r$ Non-dimensional temperature $r_{ad}$ Adiabatic flame temperature $r_{ad}$ Dimensional temperature $r_{ad}$ Dimensional temperature $i_{ad}$ Target value of incomponent of fluid velocity at the<br>boundary $i_{i}$ Target value of ith component of fluid velocity at the<br>boundary $i_{i}$ Root mean square turbulent velocity fluctuation<br>magnitude $i_{i}$ Velocity vector $i_{j}$ Kolmogorov velocity scale $i_{j}$ Kolmogorov velocity scale $i_{j}$ Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t                                 | Chemical time scale                                              | $\langle O \rangle$                    | Ensemble averaged values of a general quantity (                  |
| $g_{int}$ Number of the curve time $g_{int}$ Simulation time $g_{int}$ Kolmogorov time scale $g_{int}$ Non-dimensional temperature $G_{int}$ Adiabatic flame temperature $G_{int}$ Adiabatic flame temperature $G_{int}$ Adiabatic flame temperature $G_{int}$ Adiabatic flame temperature $G_{int}$ Dimensional temperature $G_{int}$ Dimensional temperature $G_{int}$ Dimensional temperature $G_{int}$ Target value of ith component of fluid velocity $G_{int}$ Target value of ith component of fluid velocity fluctuation<br>magnitude $G_{int}$ Revended a curve fluid velocity $G_{int}$ Revended a curve fluid velocity $G_{int}$ Component of fluid velocity fluctuation<br>magnitude $G_{int}$ Revended a curve fluid velocity fluctuation<br>magnitude $G_{int}$ Revended a curve fluid velocity <td>t<sub>c</sub></td> <td>Initial turbulent eddy turnover time</td> <td>(0)</td> <td>conditionally averaged in bins of <i>c</i> values</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t <sub>c</sub>                    | Initial turbulent eddy turnover time                             | (0)                                    | conditionally averaged in bins of <i>c</i> values                 |
| <ul> <li>Kolmogorov time scale</li> <li>Non-dimensional temperature</li> <li>Conductor of the scale</li> <li>Adiabatic flame temperature</li> <li>Conductor of the scale and the s</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>aim</sub>                  | Simulation time                                                  | $\vec{A} \bullet \vec{B}$              | Scalar product between vectors $\vec{A}$ and $\vec{B}$            |
| Non-dimensional temperatureAcronymsToUnburned gas temperatureDNSDirect Numerical SimulationTarget value of non-dimensional temperature at the<br>boundaryDNSDirect Numerical SimulationTarget value of non-dimensional temperatureLESLarge Eddy Simulationtith component of fluid velocityRANSReynolds Averaged Navier-Stokestith component of fluid velocity at the<br>boundaryvorticity with the intermediate (most extensive) prince<br>rate decreases (increases) due to chemical heat release<br>premixed flames. It is worth nothing that the analysis<br>et al. [15] was carried out for constant volume homoge<br>bulence but their findings were found to be qualitatively<br>the results by Nomura and Elghobashi [13] for non-premi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -sim<br>t <sub>n</sub>            | Kolmogorov time scale                                            |                                        | product Settreen vectors / und S                                  |
| <ul> <li>Unburned gas temperature</li> <li>Adiabatic flame temperature</li> <li>Target value of non-dimensional temperature at the boundary</li> <li>Dimensional temperature</li> <li><i>i</i>th component of fluid velocity</li> <li><i>i</i>th component of fluid velocity at the boundary</li> <li><i>i</i>th component of fluid velocity at the boundary</li> <li><i>i</i>th component of fluid velocity fluctuation magnitude</li> <li>Velocity vector</li> <li><i>i</i>th Compore velocity scale</li> <li><i>i</i>th compore velocity scale</li> <li><i>i</i>th compore velocity scale</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T<br>T                            | Non-dimensional temperature                                      | Acronvm                                | 15                                                                |
| Grad<br>Target value of non-dimensional temperature<br>boundaryDNS<br>Large Eddy Simulation<br>LES<br>pdfDirect Numerical Simulation<br>LES<br>pdfProbability density function<br>pdfProbability density function<br>RANS<br>Reynolds Averaged Navier-Stokesith component of fluid velocity<br>ti<br>iTarget value of ith component of fluid velocity at the<br>boundary<br>tiith component of fluid velocity<br>ti<br>iTarget value of ith component of fluid velocity at the<br>boundary<br>tivRoot mean square turbulent velocity fluctuation<br>magnitude<br>tivVelocity vector<br>vη<br>VolumevKolmogorov velocity scale<br>vvVolume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_0$                             | Unburned gas temperature                                         |                                        |                                                                   |
| Target value of non-dimensional temperature at the<br>boundaryLES<br>pdfLarge Eddy Simulation<br>pdfDimensional temperature<br>i,<br>i th component of fluid velocity<br>t,<br>i Target value of <i>i</i> th component of fluid velocity at the<br>boundary<br>t'LES<br>Probability density function<br>RANSVelocity value of <i>i</i> th component of fluid velocity at the<br>boundary<br>t'Velocity vector<br>the velocity vectorVNot mean square turbulent velocity fluctuation<br>magnitude<br>the velocity vectorVVelocity vector<br>the velocity scale<br>t'VVolumeVVolume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T <sub>ad</sub>                   | Adiabatic flame temperature                                      | DNS                                    | Direct Numerical Simulation                                       |
| boundarypdfProbability density functionRANSReynolds Averaged Navier-Stokesuiith component of fluid velocityuiTarget value of ith component of fluid velocity at the<br>boundaryviRoot mean square turbulent velocity fluctuation<br>magnitudeviVelocity vectorviKolmogorov velocity scaleviVolume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T <sup>req</sup>                  | Target value of non-dimensional temperature at the               | LES                                    | Large Eddy Simulation                                             |
| The presence of the component of fluid velocityRANSReynolds Averaged Navier–Stokes $u_i^redTarget value of ith component of fluid velocity at the boundaryvorticity with the intermediate (most extensive) princerate decreases (increases) due to chemical heat releasepremixed flames. It is worth nothing that the analysiset al. [15] was carried out for constant volume homogebulence but their findings were found to be qualitativelythe results by Nomura and Elghobashi [13] for non-premi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | boundary                                                         | pdf                                    | Probability density function                                      |
| <ul> <li><i>i</i>th component of fluid velocity</li> <li><i>i</i>th component of fluid velocity at the boundary</li> <li><i>i</i> Root mean square turbulent velocity fluctuation magnitude</li> <li><i>i</i> Velocity vector</li> <li><i>i</i> Kolmogorov velocity scale</li> <li><i>i</i> Volume</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>Υ</del>                      | Dimensional temperature                                          | RANS                                   | Reynolds Averaged Navier–Stokes                                   |
| <ul> <li>Target value of <i>i</i>th component of fluid velocity at the boundary</li> <li><i>i</i> Root mean square turbulent velocity fluctuation magnitude</li> <li><i>i</i> Velocity vector</li> <li><i>i</i> Kolmogorov velocity scale</li> <li><i>i</i> Volume</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u <sub>i</sub>                    | ith component of fluid velocity                                  |                                        |                                                                   |
| <ul> <li>boundary</li> <li>k output with the intermediate (most extensive) prince rate decreases (increases) due to chemical heat release premixed flames. It is worth nothing that the analysis et al. [15] was carried out for constant volume homoger bulence but their findings were found to be qualitatively the results by Nomura and Elghobashi [13] for non-premi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | u <sup>req</sup>                  | Target value of <i>i</i> th component of fluid velocity at the   |                                        |                                                                   |
| <ul> <li><i>t</i>' Root mean square turbulent velocity fluctuation magnitude</li> <li><i>i</i> Velocity vector</li> <li><i>k</i> Kolmogorov velocity scale</li> <li><i>i</i> Volume</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı                                 | boundary                                                         | vorticity w                            | vith the intermediate (most extensive) principal str              |
| magnitudepremixed flames. It is worth nothing that the analysisiVelocity vectoret al. [15] was carried out for constant volume homogeivKolmogorov velocity scalebulence but their findings were found to be qualitativelyvVolumethe results by Nomura and Elghobashi [13] for non-premi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | u′                                | Root mean square turbulent velocity fluctuation                  | rate decrea                            | ases (increases) due to chemical heat release in n                |
| iVelocity vectoret al. [15] was carried out for constant volume homoge $v_{\eta}$ Kolmogorov velocity scalebulence but their findings were found to be qualitatively<br>the results by Nomura and Elghobashi [13] for non-premi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | magnitude                                                        | premixed                               | flames. It is worth nothing that the analysis by Jal              |
| $p_{\eta}$ Kolmogorov velocity scalebulence but their findings were found to be qualitatively<br>the results by Nomura and Elghobashi [13] for non-prem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ū                                 | Velocity vector                                                  | et al. [15] v                          | was carried out for constant volume homogeneous                   |
| V Volume the results by Nomura and Elghobashi [13] for non-prem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $v_n$                             | Kolmogorov velocity scale                                        | bulence bu                             | t their findings were found to be qualitatively simila            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v <sup>"</sup>                    | Volume                                                           | the results                            | by Nomura and Elghobashi [13] for non-premixed co                 |
| <i>v</i> Chemical reaction rate bustion in the presence of inhomogeneous turbulence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>i</i> v                        | Chemical reaction rate                                           | bustion in                             | the presence of inhomogeneous turbulence. Moreo                   |

Download English Version:

## https://daneshyari.com/en/article/650342

Download Persian Version:

https://daneshyari.com/article/650342

Daneshyari.com