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h i g h l i g h t s

• Simulations for rectangular cavity flows are reported up to Reynolds number 20000.
• The eddy structure in shallow and deep cavities is analyzed.
• An analytical model is developed for a large Reynolds number.
• Vorticity in the inviscid core is found to be a function of the cavity aspect ratio.
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a b s t r a c t

Steady flow in a rectangular cavity at high Reynolds numbers is numerically and analytically investigated.
Numerical simulations are reported up to a maximum Reynolds number, Re, value of 15000 for deep
cavities and 20000 for shallow cavities using a compact fourth-order accurate central difference scheme
and a stream function–vorticity formulation. At high Reynolds numbers, the eddy structure in shallow
cavities consists of counter-rotating primary eddies, with each eddy behaving as an inviscid core with
uniform vorticity. For deep cavities, the increase in Reynolds number results in the growth and eventually
merger of the corner eddies into new primary eddies. Two merger patterns are identified, a symmetric
pattern and an asymmetric pattern depending on a local Reynolds number based on the properties of the
bottom primary eddy. A cavity with effectively infinite depth, D = 10, is also numerically investigated up
to amaximumRe value of 10000. Numerical results indicate that for an infinitely deep cavity and at a large
Reynolds number, inertia effects would dominate near the uppermovingwall, while Stokes flow behavior
would dominate away from the moving wall. An overlap region would exist, in which both inertia and
viscous effects are of comparable magnitude. Finally, an analytical solution is developed for the steady
flow in a rectangular cavity at large Reynolds numbers. Results from the analytical model are compared
to numerical solutions obtained from the full Navier–Stokes equations for both one-sided and four-sided
driven cavity configurations.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Driven cavity flow has received considerable attention over the
past fifty years, starting with the early work of Burggraf [1] for a
square cavity. The flow configuration is relevant to a number of
industrial applications such as solar collectors [2] and short-dwell
coaters [3]. Computational fluid dynamics researchers use driven
cavity flow as a classical benchmark problem for the assessment
and validation of newly developed Navier–Stokes solvers. Flow
inside a cavity is also used as a model problem to study flow
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stability, bifurcation and transition to turbulence through direct
numerical simulations [4,5].

A schematic of the driven rectangular cavity is provided in Fig. 1.
The velocity of the top side is defined as Vt , while the velocities
of the bottom, left and right sides are defined as Vb, Vl and Vr ,
respectively. Flow dynamics in the cavity depend on two non-
dimensional parameters, namely the Reynolds number, Re, and the
cavity aspect ratio, D. Flow in a square cavity, D = 1, has been
the subject of numerous studies. The first numerical results for
the driven square cavity flow were reported by Burrgraf [1], span-
ning the creeping flow limit, Re = 0, up to Reynolds number 400.
Themain characteristics of the flow in this Reynolds number range
consist of a single primary eddy and two secondary eddies located
at the bottom left and right corners of the cavity. Moreover, and for
large Reynolds number, Burrgraf [1] coupled an inviscid rotational
vortex to thin boundary layers at the cavity walls and evaluated
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Fig. 1. Schematic of the driven rectangular cavity.

the core vorticity in the cavity to be 1.886. Numerical simulations
at higher Reynolds numbers followed, showing that new tertiary
eddies are formed at the bottom corners. Ghia et al. [6], Benjamin
and Denny [7], Liao and Zhu [8], and Schreiber and Keller [9] pre-
sented simulations up to Re = 10000, while simulations up to
Re = 20000 followed by Erturk et al. [10], Hachem et al. [11] and
Botti and Di Pietro [12]. Recently,Wahba [13] reported steady flow
simulations inside a square cavity up to Re = 35000.

On the contrary, and compared to the large number of papers
devoted to the square cavity, a limited number of studies were
carried out for rectangular cavity flows. Pan and Acrivos [14]
carried out numerical investigations for Stokes flow in cavities
with aspect ratios ranging from 0.25 to 5 by a relaxation method.
In addition, experimental investigations were conducted for a
Reynolds number range from20 to 4000 for cavities of finite depth,
as well as for cavities of effectively infinite depth, D = 10. Based
on the experimental results, they stated that for cavities of infinite
depth, viscous and inertia forces should remain of comparable
magnitude throughout the whole cavity, even at a high Reynolds
number. Shankar [15] developed a calculation procedure, based on
an eigenfunction expansion, to study the eddy structure of Stokes
flow in a rectangular cavity. He showed how the second primary
eddy is formed from the merger of the two primary corner eddies.
The secondary corner eddies then assume the role of the primary
ones. As a result, and for an infinitely deep cavity, the structure of
Stokes flowwould be comprised of an infinite sequence of counter-
rotating primary eddies of diminishing strength.

As pointed out in an excellent review paper by Shankar and
Deshpande [16], very little work has been done on deep cavities
at a high Reynolds number. They attributed the limited numerical
work in this area to computational difficulties due to the slow
penetration of the flow field into the cavity depth and the large
number of grid points required, even for the creeping flow case. As
the Reynolds number is increased, the nonlinear convection terms
are introduced and more numerical difficulties arise. Recently,

some studies tried to investigate this topic. Cheng and Hung [17]
provided steady flow simulations up to a Reynolds number of
5000 and an aspect ratio of 7, while Patil et al. [18] presented
numerical results up to a Reynolds number of 3200 and an aspect
ratio of 4. Recently, steady flow simulations were reported by Lin
et al. [19] using a multi-relaxation time lattice Boltzmann method
up to Reynolds number 5000 and aspect ratio 4.

As can be seen from the above review, and up the author’s best
knowledge, numerical investigations for steady rectangular cavity
flow in the literature are limited to a maximum Reynolds num-
ber value of 5000 and a maximum aspect ratio of 7. The objective
of the present study is to numerically investigate how the eddy
structure inside the cavity transforms beyond these limits. Specif-
ically speaking, numerical simulations are performed for deep and
shallow cavities up to Re = 15000 and 20000, respectively. More-
over, numerical simulations are carried out for a cavity of effec-
tively infinite depth, D = 10, up to Reynolds number 10,000.
The present study also addresses another intriguing question re-
garding the core vorticity value for rectangular cavity flows at a
high Reynolds number. As mentioned above, Burrgraf [1] evalu-
ated the theoretical core vorticity for a square cavity to be 1.886.
The present study aims to provide similar evaluations for rectan-
gular cavities of varying aspect ratios and multiple moving walls.
This is done through the development of an analytical model for
rectangular cavity flows at large Reynolds numbers.

2. Numerical model for rectangular cavity flow

In the present section, details of the governing equations
and numerical methods are provided. Moreover, verification and
validation procedures for the developed numerical model are also
presented.

2.1. Governing equations and numerical methods

We consider steady two-dimensional flow of a viscous incom-
pressible Newtonian fluid inside a rectangular cavity, in which the
motion is generated by one or more of the cavity walls. The gov-
erning Navier–Stokes equations can be conveniently expressed in
terms of a non-dimensional stream function–vorticity formulation
as follows:
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The normalization of the governing equations is carried out using
the cavity length, L, as the length scale and the topwall velocity, Vt ,
as the velocity scale. The velocity components, u and v, are related
to the stream function, ψ , through the following definitions:

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (3)

The compact fourth-order-accurate central difference scheme of
Gupta et al. [20] is used to discretize the governing equations
(1)–(2). This higher order compact (HOC) scheme is known to
provide stable flow computations at high Reynolds numbers, as
demonstrated recently by Wahba [13] who used the HOC scheme
to compute steady flows inside a driven square cavity up to Re =

35000. The velocity components are evaluated using a compact
fourth-order discretization [21] of Eq. (3). The no-slip boundary
condition is applied at the cavity walls by enforcing a zero value
for the stream function, and evaluating the wall vorticity using
Jensen’s formula [22].
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