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a b s t r a c t

Semi-analytical expressions for the momentum flux associated with orographic internal gravity waves,
and closed analytical expressions for its divergence, are derived for inviscid, stationary, hydrostatic,
directionally-sheared flow over mountains with an elliptical horizontal cross-section. These calculations,
obtained using linear theory conjugated with a third-order WKB approximation, are valid for relatively
slowly-varying, but otherwise generic wind profiles, and given in a form that is straightforward to
implement in drag parametrization schemes. When normalized by the surface drag in the absence of
shear, a quantity that is calculated routinely in existing drag parametrizations, the momentum flux
becomes independent of the detailed shape of the orography. Unlike linear theory in theRi → ∞ limit, the
present calculations account for shear-induced amplification or reduction of the surface drag, and partial
absorption of the wave momentum flux at critical levels. Profiles of the normalized momentum fluxes
obtained using this model and a linear numerical model without the WKB approximation are evaluated
and compared for two idealized wind profiles with directional shear, for different Richardson numbers
(Ri). Agreement is found to be excellent for the first wind profile (where one of the wind components
varies linearly) down to Ri = 0.5, while not so satisfactory, but still showing a large improvement relative
to the Ri → ∞ limit, for the second wind profile (where the wind turns with height at a constant rate
keeping a constant magnitude). These results are complementary, in the Ri ' O(1) parameter range, to
Broad’s generalization of the Eliassen–Palm theorem to 3D flow. They should contribute to improve drag
parametrizations used in global weather and climate prediction models.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the many physical processes that are currently still un-
resolved in large-scale weather and climate prediction models is
the effect of atmospheric gravity waves. These waves propagate in
stratified fluids (such as the atmosphere typically is) [1], and are
predominantly forced by flow over orography or convection occur-
ring at horizontal scales (1–10 km) smaller than the grid spacings
used operationally.

Waves generated by flow over mountains, which constitute a
sizeable fraction of the total gravity waves, are known asmountain
waves. These waves produce a surface drag on orography [2],
whose reaction force decelerates the airflow, and must be
parametrized to avoid substantial biases in the simulated global
atmospheric circulation [3]. However, most well-known drag
parametrizations are now outdated, having been developed in the
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1990s [4,5]. The part of these parametrizations that accounts for
the impact of wave propagation on the surface drag is based on
linearwave theory, neglecting a number of important physical pro-
cesses, such as non-hydrostatic effects, variations of the wind and
static stability with height, and obviously wave nonlinearity, to
mention just a few.

Linear theory is useful for developing drag parametrizations
because it allows the drag to be expressed as a function of key
orographic and incoming flow parameters. While a treatment of
nonlinearity is, by definition, beyond its capabilities, wind profile
effects can, in principle, be incorporated, although for genericwind
profiles no analytical solutions exist, which precludes the deriva-
tion of simple drag expressions. Nevertheless, vertical wind shear
has decisive implications for drag parametrization, since it may
cause divergence of the wave momentum flux, which corresponds
to a non-zero value of the reaction force exerted by the orography
on the atmosphere [6,7].

Eliassen and Palm [8] demonstrated that the wave momen-
tum flux in 2D flows is constant with height, even when the wind
and static stability vary, except at levels where the wind vanishes
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(critical levels). This means that all the drag is exerted on the at-
mosphere at those particular discrete levels. More recently, how-
ever, Broad [9] showed that, in flowswith directional shear over 3D
mountains, critical levels (where the wind velocity is perpendicu-
lar to the horizontalwavenumber vector of a given spectral compo-
nent of the waves) have a continuous distribution with height, and
the variation of thewavemomentum flux is coupledwith the turn-
ing of the wind with height. Specifically, at a given level, the verti-
cal derivative of the wave momentum flux vector (the momentum
flux divergence) must be perpendicular to the wind velocity. This
law, which is a generalization of the Eliassen–Palm theorem to 3D,
places a strong constraint on the force exerted bymountains on the
atmosphere.

However, the exact dependence of the drag on key flow pa-
rameters can only be determined by solving the corresponding
mountain wave problem. Since this is not feasible analytically in
the case of generic wind and static stability profiles, numerical or
approximate methods must be employed. In the second category,
one possibility is to split the atmosphere into a number of layers
within which the wind velocity and static stability have a simple
form (e.g., [10–13]), and then obtain the complete wave solutions
and the corresponding drag. However, this approach lacks gener-
ality, and its results are often too cumbersome to implement in
parametrizations. An alternative approach is to assume that the
wind profile varies relatively slowly with height, and adopt aWKB
approximation to obtain the wave solutions. Despite its limita-
tions, this approach is considerably more general, being valid for
generic (albeit slowly varying) wind profiles, and therefore pro-
viding a leading-order correction to the drag due to variation of
the wind with height.

Teixeira et al. [14] calculated the surface drag using linear the-
ory with a second-order WKB approximation for sheared, station-
ary, hydrostatic flow over an axisymmetric mountain and Teixeira
and Miranda [15] did the same for 2D mountains. This model was
extended to mountains with an elliptical horizontal cross-section
by Teixeira and Miranda [16]. Subsequently, the wave momentum
fluxwas calculated, using the samekind of approach, for flowswith
directional shear over an axisymmetric mountain [17]. This eluci-
dated the filtering effect of critical levels with a continuous distri-
bution with height in such flows, where the wave momentum flux
may not be totally absorbed at relatively low Richardson numbers
(Ri), but rather filtered. Teixeira andMiranda [17] did not calculate
the wave momentum flux for flows with unidirectional shear or
over 2D mountains, where critical levels occur at discrete heights
(as mentioned above). These very particular cases had been ad-
dressed previously for simple wind profiles (without invoking the
WKB approximation) by Booker and Bretherton [18] and Grubis̆ić
and Smolarkiewicz [19].

In the most important weather prediction and climate models,
such as that running at the European Centre for Medium-Range
Weather Forecasts (ECMWF), the Earth’s orography is approxi-
mated in eachmodel grid box as amountainwith an elliptical hori-
zontal cross-section, with height, width and orientation calculated
statistically from the real orography [20,4]. This approach appeals
to a superposition principle (whereby the waves in each grid box
do not interact with those in adjacent ones) whose strict validity
is not straightforward, even for linearized flow. However, the fact
that the width of these elliptical mountains is likely to be substan-
tially smaller than the grid box (because they represent unresolved
orography), and the assumption that the flow is hydrostatic (thus
having very limited lateral wave propagation, especially at the sur-
face), are consistent with the adopted, single-column approach.

In the present study we will develop and test the theory for
calculatingwavemomentum fluxes in linearized, hydrostatic, non-
rotating flow with directional shear over elliptical mountains.
This theory provides nearly ready-to-use momentum flux and

momentum flux divergence expressions, which may easily be
incorporated into drag parametrizations. The results will be
compared to those produced by a linear numerical model that
does not assume the WKB approximation. Nonlinear effects were
addressed previously in some detail for an axisymmetricmountain
via comparisons with numerical simulations [17], and should not
differ too much qualitatively for an elliptical geometry. Since it
seems hopeless at present to formulate a physically self-consistent
nonlinear mountain wave theory that is simple enough to
implement in drag parametrizations, we neglect nonlinear effects
altogether and focus here instead on evaluating the accuracy of the
WKB approximation.

The remainder of this paper is organized as follows. Section 2
presents the linear mountain wave theory using theWKB approxi-
mation on which the subsequent momentum flux calculations are
based. In Section 3, a linear numerical model that allows the treat-
ment of arbitrarywindprofiles (i.e. not assuming theWKBapproxi-
mation) is briefly described. Section 4 explores the behaviour of the
wavemomentum fluxwith height for two representative idealized
wind profiles. Finally, Section 5 summarizes the main conclusions
of this study.

2. Linear WKB theory

The vertical flux of horizontal momentum associated with
mountain waves forced by an arbitrarily-shaped isolated obstacle
is defined here as

(Mx,My) = −ρ


+∞

−∞


+∞

−∞

(u, v)w dxdy, (1)

where ρ is the density, (u, v, w) is the velocity perturbation cre-
ated by the waves, and x and y are the horizontal spatial coordi-
nates. As in Teixeira and Miranda [17], this definition includes the
minus sign, because the momentum flux is generally downward,
and that convention makes it positive for a mean flow that is pos-
itive in the x and/or y direction.

Departing from linear theory with the Boussinesq approxima-
tion, assuming inviscid, non-rotating, stationary, hydrostatic flow
and using additionally a WKB approximation to solve the Tay-
lor–Goldstein equation (where the vertical wavenumber of the
waves is expanded in a power series of a small parameter ε pro-
portional to Ri−1/2 [14] up to third order), it can be shown that the
momentum flux, correct up to second-order in ε, is given by
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(see Eqs. (27)–(29) of [17]), where

S(k, l, z) =
1
8
(U ′k + V ′l)2

N2(k2 + l2)
+

1
4
(Uk + Vl)(U ′′k + V ′′l)

N2(k2 + l2)
, (3)

C(k, l) =
N(k2 + l2)1/2

|U ′
ck + V ′

c l|


1 −

1
8
(U ′

ck + V ′
c l)

2

N2(k2 + l2)


. (4)

In the above equations ρ0 is a reference density (assumed to be
constant), z is height,N and (U, V ) are the Brunt–Väisälä frequency
and velocity of the mean incoming flow, (k, l) is the horizontal
wavenumber vector of the waves, and ĥ(k, l) is the Fourier trans-
form of the terrain elevation h(x, y). zc is the height of the critical
level, the subscript 0 denotes values taken at the surface z = 0
and the subscript c denotes values taken at the critical level, H is
the Heaviside step function and the primes denote differentiation
with respect to z.
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