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a b s t r a c t

Thin volatile Newtonian liquid films with a free surface on a cooled horizontal substrate are studied
theoretically and numerically.We show that if the fluid is initially in equilibriumwith its own vapor in the
gas phase, regular surface deformation patterns in the formof long-wave hexagons or stripes having awell
defined lateral length scale are observed, depending on the instability mechanism. This is different to the
case without evaporation where rupture or coarsening to larger and larger spatially disordered patterns
is seen in the long time limit. We propose to use such a system to create a regular structuring of the film’s
surface. Heat production by latent heat and the influence of a temperature dependent surface tension
(Marangoni effect) are included as well. Special emphasis is laid on the so-called anomalous Marangoni
effect. In this case a parameter region where stripes should occur already at threshold is found by means
of a systematic weakly non-linear analysis.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Regular self-organized patterns of fluidmotion are known since
the experiments of Michael Faraday in 1831 [1]. Faraday excited
the fluid layer mechanically by harmonic vibrations and observed
regular squares along its free surface. Seventy years later, Henri Bé-
nard performed his famous convection experiments [2], where he
obtained liquid motion organized in the form of regular hexagons.
The fluid rises in the center of each hexagon and descends along its
six sidewalls. This is the standard pattern obtained in liquids and
therefore called ℓ-hexagon(s). Hexagons break the up–down sym-
metry of the patterns. Mirroring at the midplane, ℓ-hexagons turn
into g-hexagons commonly found in gases. Here, the fluid descends
in the center of the hexagons.

In his seminal paper in 1960, Enok Palm [3] was the first who
used these symmetry arguments to show that ℓ-hexagons are the
preferred patterns in convection, if the up–down symmetry is
broken by a temperature dependent viscosity. In a contemporary
notation, onewouldwrite down an amplitude equation in the form
(see Section 3 of this contribution)

Ψ̇ = ε Ψ + AΨ 2
− Ψ 3

where Ψ represents the pattern amplitude, ϵ is the distance to
threshold and A stands for the symmetry breaking effects [4].
Besides temperature dependent viscosity, symmetry breakingmay
originate from a temperature dependent thermal conductivity
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or a nonlinear temperature dependence of the density of the
liquid [5]. All these effects are summarized under the notion ‘‘Non-
Boussinesqian’’ and give rise to a non-vanishing A. The change of
sign of A marks the codimension-one hyperplane in parameter
space where ℓ-hexagons A > 0 turn into g-hexagons (A < 0). As
an example we mention the Bénard–Marangoni instability where
A depends on the Prandtl number Pr and A = 0 is achieved for
Pr ≈ 0.23, as shown in [6].

The above mentioned patterns have been observed in layers
having the depth of some millimeters or more. The structures that
emerge at instability possess a finite horizontal wave vector and
are of the same size than the layer depth. In the present paper, we
wish to study a thin liquid film showing a long wave instability.
Then the lateral length scale of the unstable patterns ismuch larger
than the depth. Motivated by the shallow water equations for
inviscid fluids [7], a long-wave equation for viscous thin layers was
derived systematically from the Navier–Stokes equations [8] by
expansion with respect to a small parameter. In very thin viscous
films, inertia can be neglected compared to friction and a closed
equation for the location of the liquid’s free surface can be derived
(for reviews see [9] and the quite recent paper [10]).

The dynamics of a free surface of a viscous liquid is also of high
interest from the viewpoint of self-organized pattern formation
[4,11]. Surface deformation patterns of thin liquid films on a
solid support were studied during the past decade in numerous
experimental and theoretical contributions (see [9,10,12–16] and
references therein). The typical scenario is the following: due to an
instability mechanism (thermal, solutal, gravitational, etc.) the flat
surface is unstable and the fluid begins to move. Thereby surface
patterns are formed and show coarsening. Rather irregular cells
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Fig. 1. The flat surface of a fluid on a horizontal plate cooled from below is stable
at position h0 where liquid and gas layers are in thermodynamic equilibrium. If the
surface is at position h > h0 the liquid would evaporate, if it would be below h0 it
would condense until h0 is reached.

evolve first in the form of drops, holes or mazes. Although already
large scaledwith respect to the film’s depth, they increase their size
continuously in course of time and end on amuch larger scale than
the initial ones. Another possibility is that rupture occurs during
the temporal evolution.

For technological applications the creation and control of or-
dered and regular micro structures come more and more into the
focus of interest. Surface patterns with prescribed length scales
and geometries can be produced in several ways, one simple pos-
sibility is to use a structured substrate [17–19]. Here, we propose
another method: the self-organized pattern growth due to an in-
stability mechanism of the initially flat film. There are several
mechanisms that may destabilize a flat surface and that allow to
control the growth of surface patterns. Flat ultra-thin films may
become unstable by van der Waals forces between surface and
substrate [13–15]. Thicker films can be destabilized by inhomo-
geneous tangential surface tensions (Marangoni effect), which in
turn are often caused by lateral gradients of temperature and/or,
in mixtures, of concentration [16,20,21].

In a previous publication [22] we showed that the inclusion
of evaporation and condensation at the free surface may change
pattern formation qualitatively. Rupture can be avoided for large
enough evaporation rates and, even more important, due to the
modified character of the instability, coarsening does no longer
occur in the long time limit. Instead we found very regular cell
structures in the form of hexagons, known from their morphology
from small scale convection in thicker fluid layers [23–25].

If a temperature gradient vertically to the surface is applied,
evaporation can stabilize or destabilize the flat surface, depending
on the sign of the gradient. If the film is located on a heated support,
evaporation acts destabilizing: thinner regions have their surface
closer to the hotter substrate, evaporate stronger, getting even
more thinner and finally rupture. Now assume that the fluid is
heated from the gas side (or cooled from the support). If the partial
pressure of the vapor in the gas layer is equal to the saturation
pressure belonging to the surface temperature of the initial flat
film, then a small depression of the surface into colder regions leads
to local condensation, a small elevation into hotter regions causes
evaporation, see Fig. 1. Thus, evaporation acts stabilizing.

Throughout the present paper, evaporation is assumed to be
stabilizing. As a consequence, another destabilizing mechanism is
necessary to obtain self-organized structures. The perhaps most
simple method for destabilization is to put the film upside down,
i.e. to position it under a flat horizontal plate. Then gravity acts
against the stabilizing surface tension and inhomogeneous surface
patterns can result [26]. This is called Rayleigh–Taylor instability
(RTI) and was examined in [22].

Here we shall first concentrate on the Rayleigh–Taylor insta-
bility. We assume a vertical heat gradient applied from outside. If
the fluid is heated from the gas side, this would in addition stabi-
lize the flat film by the Marangoni effect which was not included

in [22]. Neglecting evaporation, it was shown in [26] that RTI may
occur if the temperature gradient is not too large so that gravity
may overcome theMarangoni effect. Since we are interested in the
emergence and saturation of regular surface patterns, we perform
a weakly non-linear analysis close to threshold. We show that for
RTI combined with stabilizing evaporation, latent heat production
and surface tension, the typical 2D-patterns (hexagons, stripes,
squares) bifurcate subcritically. Thus the validity of a third order
amplitude equation is rather restricted. Finally we shall also con-
sider the standard configurationwhere gravity is stabilizing, i.e. the
light gas layer is located on top of the fluid. To obtain an unstable
situation of the flat film for this case, a fluid showing the anoma-
lous Marangoni effect is used. Here, surface tension increases with
temperature, a situation encountered in certain aqueous alcohol
solutions [27]. Strong enough heating from the gas side may cause
a Marangoni instability of the flat and motionless layer. A weakly
non-linear analysis shows now that the cubic coefficients of the
amplitude equations have a stabilizing (negative) sign and a sta-
bility diagram in parameter space can be computed.

2. Thin film equation and evaporation

2.1. Thin film equation

Up to now, most of the theoretical work is based on an inter-
face equation, often called thin film equation, describing the loca-
tion z = h(x, y, t) of the free surface of the liquid [9,28,29]. This
equation can be systematically derived from the Navier–Stokes
equation using the lubrication approximation. For the case of an
externally applied temperature gradient vertically to the free sur-
face, it reads:

∂th = −∇


−

h2

2
M

dTI(h)
dh

∇h +
1
3
h3C−1

∇
2
∇h −

1
3
Gh3

∇h


, (1)

where TI(h) is the temperature at the free surface and∇ and∇
2 de-

note the horizontal gradient and Laplace operators. In (1) a scaling
for lengths and time according to

(x̃, ỹ, z̃, h̃) = (x, y, z, h) · d, t̃ = t · τ , τ = d2/κ

is used (variables with a tilde bear dimensions). The thickness of
the (flat) fluid layer in rest is hd, τ denotes the vertical diffusion
time of heat, and κ is the thermal diffusivity of the liquid. Viscos-
ity, density, and thermal conductivity of the fluid are denoted with
ν, ρ, and λ1. The width of the gas layer is dg , λ2 is its thermal con-
ductivity and g the gravitational acceleration.

Scaling results into the dimensionless numbers M (Marangoni
number), G (gravity number), C (Crispation number) defined as

M =
γT∆Td
ρνκ

, G =
gd3

νκ
, C =

κνρ

γ0d
. (2)

Here, surface tension is assumed to be a linear function of surface
temperature TI .

Γ = γ0 − γT (T̃I − T̃0), γ0, γT > 0. (3)

Temperatures will be scaled to the externally applied temper-
ature difference ∆T = T̃0 − T̃1, T̃1 being the temperature of the
boundary at z = d + dg , T0 that of the solid support (z = 0). The
mean control parameter isM which is directly linked to the exter-
nally applied temperature difference. Note thatM is negative if the
system is cooled from the liquid side, G is negative if gravity acts in
direction to the gas side (RTI).

Previous work shows that in the case of a surface-driven
thermal instability, the film thickness may reach very small values
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