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a b s t r a c t

The onset of convection in a porous layer which is heated from below is considered. In particular we seek
to determine the effect of spatially periodic variations in the permeability field on the identity of the onset
mode as a function of both the period P of this variation and its amplitude A. A Floquet theory is assumed
in order to ensure that the analysis is as general as possible. It is found that convection is always three-
dimensional and that the critical Rayleigh number always decreases as either the period or the amplitude
of the permeability variation increases. Furthermore, the corresponding Floquet exponent ν is either 0 or
1, and the range of values of P over which ν = 1 corresponds to the favoured mode has been obtained as
a function of A.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The onset of convective instability in a porous layer with a ver-
tical temperature gradient has been the subject of very consider-
able attention particularly in the course of the last few decades.
The first studies on this topic [1,2] were formulations of the classi-
cal Rayleigh–Bénard problem within the context of filtration pro-
cesses in porous media as modelled through Darcy’s law [3]. A
development of these early studies on what might be called the
Darcy–Bénard problem, was carried out by Palm et al. [4] in or-
der to investigate the nonlinear effects under slightly supercritical
conditions. These authors obtained an expression for the Nusselt
number to high order in the supercritical parameter (Ra−Rac)/Ra,
where Ra is the Rayleigh number and Rac = 4π2 is its critical value
at the onset of instability [3].

While there are many different extensions that one might
apply to the Darcy–Bénard problems, some of which are the
adoption of Brinkman and/or inertia effects, the dropping of the
assumption of local thermal nonequilibrium, and the considera-
tion of inclined layers or ones which conducting boundaries, the
one which we concentrate on here is the effect of a heterogeneous
permeability field. Heterogeneity could comprise layered materi-
als or media where the permeability varies continuously with one
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or more coordinates, or else it could be random. McKibbin and
O’Sullivan [5] studied a horizontally layered material and showed
that large permeability differences are required for the multilay-
ered medium to display onset conditions markedly different from
those for a homogeneous layer. This analysis was developed fur-
ther by Rees and Riley [6] by taking into account weakly nonlinear
effects and they showed that double or multiple minimum loci for
the Rayleigh number may exist at onset of instability. Studies of
the Darcy–Bénard problem for heterogeneous porous media were
carried out also by Nield and Simmons [7]. We mention that other
sensible developments on this topicwere achieved byMcKibbin [8]
and by Nield [9].

A situationwhere the permeability undergoes a periodic change
was envisaged by De Wit and Homsy [10,11]. However, the kind
of instability investigated by these authors is definitely different
from the buoyancy-induced Rayleigh–Bénard instability. In fact,
the physical effect leading to the instability is a concentration-
dependent viscosity in the binary fluid saturating the porous
medium. Much more closely related to the present paper is the
work of Rees and Tyvand [12] (hereinafter referred to as Part 1)
who considered a porous layer with a permeability which varies
periodically in a horizontal direction. The analysis carried out in
that paper was two-dimensional thus limiting the study to the be-
haviour of transverse rolls, i.e. ones with axes that are perpendic-
ular to the direction of the x-axis along which the permeability
changes periodically.

The aim of this contribution is to extend the investigation re-
ported by Rees and Tyvand [12] from two-dimensional to three-
dimensional modes. The Floquet theory, which was employed by
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Rees and Tyvand [12] to determine the selected two-dimensional
modes of instability, is used in this study in order to determine
whether two-dimensional modes or three-dimensional modes are
favoured at onset of convection.

2. Governing equations

We consider a plane porous layer saturated by a Newtonian
fluid. The thickness of the layer is H . The boundary planes at z = 0
and z = H are impermeable and isothermal, and are held at the
temperatures Th and Tc , respectively, where Th > Tc . The perme-
ability, K , varies periodically in the x-direction and satisfies the fol-
lowing trigonometrical law,

K = K0 [1 + A cos(λx/H)] , (1)

where K0 is the mean permeability, A ∈ [0, 1) is a dimension-
less amplitude, and λ is a dimensionless wavenumber which is
such that 2πH/λ is the period of the permeability distribution (see
Fig. 1).

The onset of convection in the porous layer is carried out un-
der the following assumptions: (i) Darcy’s law holds; (ii) the Ober-
beck–Boussinesq approximation may be applied; (iii) the effective
thermal conductivity and the effective volumetric heat capacity
(the average product of the density and the specific heat) of the
saturated porous medium are approximately uniform; (iv) there
is local thermal equilibrium between the solid phase and the fluid
phase; (v) no internal heating effect occurs. Assumption (iii) is a re-
alistic description of porousmedia with an approximately uniform
porosity. In spite of that, permeability can still be non-uniform.
For instance, this may be the case with beds of particles or fibres,
where the permeability may be inhomogeneous with a homoge-
neous porosity due to a variable morphology as, say, a spatially-
varying average particle or fibre diameter. Another argument is
that, while the effective thermal conductivity and the effective vol-
umetric heat capacity depend on the porosity, permeability is con-
trolled by the interconnected porosity of the medium. The latter
parameter excludes from the evaluation of the void volume frac-
tion the dead-end pores, where the fluid cannot actually flow.

We can express the governing equations in a dimensionless
form by adopting the scalings,

1
H

(x, y, z) → (x, y, z) ,
αm

σH2
t → t,

H
αm

(u, v, w) → (u, v, w) ,

T − Tc
Th − Tc

→ T ,
K0H
µαm

∇p → ∇p.

(2)

Here, x, y, z and t denote the Cartesian coordinates and time, u, v,
w are the velocity components, T is the temperature, ∇p is the dy-
namic pressure gradient, αm is the effective thermal diffusivity of
the saturated porous medium, µ is the fluid viscosity, and σ is the
ratio between the effective volumetric heat capacity of the satu-
rated porous medium and the volumetric heat capacity (the prod-
uct of the density and the specific heat) of the fluid.

On account of Eq. (2), the dimensionless local balance equations
for mass, momentum and heat transport may be written as

∂u
∂x

+
∂v

∂y
+

∂w

∂z
= 0, (3a)

u = −F(x)
∂p
∂x

, v = −F(x)
∂p
∂y

,

w = −F(x)


∂p
∂z

− Ra T


,

(3b)

∇
2T =

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

, (3c)

while the boundary conditions are expressed as

z = 0 : w = 0, T = 1,
∂p
∂z

= Ra,

z = 1 : w = 0, T = 0,
∂p
∂z

= 0.
(4)

Here, F(x) and the Darcy–Rayleigh number Ra are defined respec-
tively as,

F(x) = 1 + A cos(λx), Ra =
ρcgβ (Th − Tc) K0H

µαm
, (5)

where ρc is the fluid density at the reference temperature Tc , g is
the modulus of the gravitational acceleration g, and β is the ther-
mal expansion coefficient of the fluid.

The aim of this paper is to understand how the onset of three-
dimensional convection depends on the values of the non-
dimensional parameters,A, P and ν, whereA is the amplitude of the
permeability variation, P = 2π/λ is the period of that variation,
and ν is the Floquet exponent to be introduced below.

3. Basic solution and analysis of linear disturbances

A basic state which is a stationary solution of Eqs. (3) and (4)
with a zero velocity exists and is given by

ub = vb = wb = 0, Tb = 1 − z,
∂pb
∂x

= 0,

∂pb
∂y

= 0,
∂pb
∂z

= Ra (1 − z) ,

(6)

where the subscript b denotes the ‘‘basic solution’’. We introduce
small-amplitude disturbances of the basic solution, Eq. (6), as
follows,

(u, v, w) = (ub, vb, wb) + ε (U, V ,W ) , T = Tb + εθ,

∇p = ∇pb + ε∇P ,
(7)

where ε is a perturbation parameter, such that |ε| ≪ 1. We now
substitute Eqs. (6) and (7) into Eqs. (3) and (4), and neglect terms
which are of O(ε2). Thus, the system of linearised disturbance
equations is given by

∂U
∂x

+
∂V
∂y

+
∂W
∂z

= 0, (8a)

U = −F(x)
∂P

∂x
, V = −F(x)

∂P

∂y
,

W = −F(x)


∂P

∂z
− Ra θ


,

(8b)

∇
2θ =

∂θ

∂t
− W , (8c)

z = 0, 1 : W = 0, θ = 0. (8d)

A pressure–temperature formulation is obtained by substituting
Eq. (8b) into Eq. (8a), so that we finally obtain

∇
2P = Ra

∂θ

∂z
− G(x)

∂P

∂x
, (9a)

∇
2θ =

∂θ

∂t
+ F(x)


∂P

∂z
− Ra θ


, (9b)

z = 0, 1 :
∂P

∂z
= 0, θ = 0, (9c)

where

G(x) =
F ′(x)
F(x)

= −
Aλ sin(λx)

1 + A cos(λx)
, (10)
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