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a b s t r a c t

In a recent paper (McKibbin et al., 2011) some questions were posed about fluid and heat flows in a
stratified groundwater aquifer with a small slope, subject to a perpendicular temperature gradient. The
strength of shear flows in the direction of the maximum slope and the associated convected heat flux
were quantified. This paper provides a method to quantify the stability of such flows and the shape and
amplitude of convective rolls that may form when the critical Rayleigh number is exceeded. The associ-
ated issue of how the mean flow-path of a soluble species introduced into the aquifer is affected by the
convective rolls, is also considered. The models formulated are for buoyancy-driven fluid flow in long,
sloping warm-water aquifers with both smoothly- and discretely-layered structures.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thermally-driven convection in porous media occurs in a wide
variety of geophysical and industrial settings. It has been exten-
sively studied and modelled both for particular applications and
as a more generic phenomenon, and is comprehensively reviewed
by Nield & Bejan [1]. Early work [2,3] that investigated the cri-
terion for onset of convection in a homogeneous isotropic uni-
form layer heated from below has been extended in many ways
since. In particular, the spatial structure of the permeable sys-
tem has been allowed to vary in later models – critical conditions
for anisotropic horizontal layers were found [4], the stability of
horizontally-layered porous slabs was investigated in McKibbin &
O’Sullivan [5,6], and the anisotropic analogue of a layered system
was studied in [7] – such work was reviewed in [8]. The motion-
less equilibrium state of a saturated permeable layer may be sta-
ble to thermal gradients in special cases (horizontal layer, uniform
temperature horizontal boundaries, small enough Rayleigh num-
ber, etc.); however, any thermal non-uniformity on the boundaries
or heat sources, or any variation in thermal conductivity that is not
purely horizontal or vertical, usually provides conditions for con-
vective motion. In particular, non-horizontal heated boundaries
immediately provide thermal buoyancy forces that drive the fluid.

Convection in sloping permeable layers has been studied by
several authors. Investigations of multi-layered systems subjected
to uniform vertical salinity and/or temperature gradients were re-
ported in [9,10]; the systems were considered to be unaffected by
distant boundaries. Provided the system Rayleigh number Ra is not
too large in a homogeneous system (Ra cosα < 4π2, whereα is the
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layer slope angle), a steady stable unicellular convection cell may
be established [9,11–13], and the flow far from the ends of a system
with a small thickness-to-length ratio will be parallel to the up-
per and lower boundaries. Numerical and experimental investiga-
tions of thermally-induced convection in tilted fractures filledwith
a homogeneous porousmaterial within an otherwise impermeable
slabwere reported byMedina et al. [14]; the temperature and fluid
flowprofileswere found to be approximately linear across the frac-
ture.

Quantification of such steady convective motion induced by
temperature differences across a sloping porous slab of finite thick-
ness was provided in [15]. The heat flow is dominated by con-
duction, but a small-scale convective motion is induced; this is
additional to any net through-flow that may present due to a small
dynamic pressure gradient along the system. Under the conditions
described above, the flow is parallel to the sloping boundaries. A
model was formulated for the case where the aquifer system has
a layered structure, smooth or discrete, due to geological bedding.
This paper provides a brief reviewof that study, and continueswith
a formulation of the equations that may be used to quantify the
system’s state when it is liable to instability. Examples are used to
illustrate the method but, because the parameters are so numer-
ous, only a small selection can be shown.

First, the equations that describe themovement of the fluid and
thermal energy are summarized. The steady-state fluid flow and
temperature profiles due to natural convection for a sloping system
reported in [15] are repeated briefly here.

The aim is to use the natural bedded structure of such geo-
logical systems to advantage. The results of this model should be
applicable to analyzing fluid fluxes and temperature profiles occur-
ring in sloping aquifers. It is worth noting that most aquifers have
some degree of tilt caused by crustal movement after a sequence
of alluvial layers is deposited. Use of this model may enable quan-
tification of resulting natural flows.
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Nomenclature

(SI Units given where appropriate)
a Convective roll amplitude (–)
c Specific heat (J kg−1 K−1)
d Sub-layer thickness (m)
g Gravitational acceleration (m s−2)
H Total system thickness (m)
ℓ,m Wavenumbers
k Thermal conductivity (W m−1 K−1)
L Cell-width (–)
K Permeability (m2)
n Layer number
N Total number of sub-layers
p Fluid pressure (Pa)
q Specific flux (m2 s−1)
Q Dimensionless net volume flux (–)
Ra Rayleigh number (–)
s Growth rate (–)
t Time (s)
T Temperature (K)
u
˜

Fluid specific volume flux (m s−1)
u, v, w Components of u

˜
(m s−1)

W Flow speed function (–)
x, y, z Spatial coordinates (m)

Greek symbols
α Slope angle (rad)
β Thermal expansivity (K−1)
δ Scaled sub-layer thickness (–)
ζ , σ Continuous variables
η Thermal conductivity anisotropy (–)
θ Temperature function (–)
κ Scaled permeability (–)
µ Dynamic viscosity (kg m−1 s−1)
ν Kinematic viscosity (m2 s−1)
ξ Permeability anisotropy (–)
ρ Density (kg m−3)
φ Porosity (–)
χ Scaled thermal conductivity (–)
ψ Stream function (–)
1T Temperature difference (K)

Subscripts
⊥ Perpendicular to bedding plane
= Parallel to bedding plane
0 Datum value at axes origin
a Datum value at upper boundary
crit Critical value
f Fluid
i, j, r Layer numbers
m Matrix-fluid mixture value
P At constant pressure
s Solid matrix
SS Steady state
W Matrix operator
α Matrix operator
θ Matrix operator
K Matrix operator
min Corresponding to minimum value
x, y Axis directions

Superscripts
ˆ (Hat) non-dimensionalized quantity
¯ (Overbar) weighted average
′ Perturbation value
∗ Special value (as defined in text)
a Along slope
c Cross slope
temp Temporary value

z

x

H

0

α

T = Ta, w = 0

T = Ta + ΔT, w = 0

u(z, t)

Fig. 1. Schematic cross-section of a sloping aquiferwith impervious and isothermal
boundaries. The x-axis is aligned in the direction of maximum slope and the z-axis
is perpendicular to it. The temperature of the lower boundary is higher than that of
the upper one.

2. The equations for fluid and heat flow

Consider convection of a fluid (considered here to be a liquid)
within a slopingporous layer of uniform total thicknessH , bounded
above and below by plane impervious surfaces (a schematic is
shown in Fig. 1). The upper boundary ismaintained at temperature
Ta while the bottom boundary is kept at the higher temperature
Ta + 1T . Cartesian coordinates (x, y, z) are aligned so that the
x-axis is parallel to the base of the sloping layer and positive in
the up-slope direction (angle α ≥ 0 to the horizontal), while the
z-axis is perpendicular to the base of the layer. The gravitational
acceleration vector is then given by g

˜
= (−g sinα, 0,−g cosα).

The layer lies between the hotter bottom boundary at z = 0 and
the cooler top surface at z = H .

The matrix parameters may vary through the thickness of the
layer. The equations describing conservation of mass, momentum
and energy of the fluid within the layer are, invoking the Boussi-
nesq assumption and neglecting inertia in the momentum balance
(see [1], for example):

∇ · u
˜

= 0

u
˜

=
K
µf
(−∇p + ρf g

˜
) (1)

(ρc)m
∂T
∂t

= −∇ · [(ρcP)f Tu
˜
− km∇T ].

Here, u
˜

= (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) ((m3 s−1)
m−2

= m s−1) is the specific fluid volume flux (usually termed
the Darcy velocity), K(z) (m2) is the matrix permeability (assumed
to be locally isotropic), T (x, y, z, t) (K) is the temperature, ρf (T )
(kg m−3) is the fluid density, µf (T ) (kg m−1 s−1) is the dynamic
viscosity of the fluid and p(x, y, z, t) (Pa = kgm−1 s−2) is the fluid
pressure.

The specific heat content (ρc)m and the thermal conductivity
km of the fluid-saturated medium (a matrix-fluid ‘‘mixture’’), both
subscripted m, may be found by suitably-weighted combinations
of the solid matrix (subscript s) and fluid parameters (subscript f ).
For example [1]:

(ρc)m = (1 − φ)(ρc)s + φ(ρcp)f
km = (1 − φ)ks + φkf .

Here, cp(T ) (J kg−1 K−1) is the specific heat of the fluid, φ
(dimensionless) is the matrix porosity and km(z) (W m−1 K−1) is
the (locally isotropic) thermal conductivity of the fluid-saturated
porous medium.

The density variation (due to thermal expansion) of the fluid is
neglected except in themomentum equation (Darcy’s Law), where
it is approximated by ρf = ρa[1 − βa(T − Ta)] with ρa = ρf (Ta)
(kgm−3), where Ta is the (reference) upper boundary temperature,
and βa (K−1) is the fluid thermal expansivity at T = Ta; elsewhere,
ρf = ρa. Likewise, the fluid’s dynamic viscosity, µa = µf (Ta) and
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