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The formation and amplification of streamwise velocity perturbations induced by cross-stream distur-
bances is ubiquitous in shear flows. This disturbance growth mechanism, so neatly identified by Ellingsen
and Palm in 1975, is a key process in transition to turbulence and self-sustained turbulence. In this re-
view, we first present the original derivation and early studies and then discuss the non-modal growth
of streaks, the result of the lift-up process, in transitional and turbulent shear flows. In the second part,
the effects on the lift-up process of additives in the fluid and of a second phase are discussed and new
results presented with emphasis on particle-laden shear flows. For all cases considered, we see the lift-up

process to be a very robust process, always present as a first step in subcritical transition.
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1. Introduction
1.1. “Stability of linear flow”

This is the title of a research note in Physics of Fluids of less
than two pages published in 1975 by Ellingsen and Palm. In this
work, the authors identify a linear mechanism responsible for the
amplification of fluctuations in shear flows. In their own words, a
finite disturbance independent of the streamwise coordinate may lead
to instability of linear flow, even though the basic velocity does not
possess any inflection point. This mechanism, later denoted as the
lift-up effect, is a key process in the laminar-turbulent transition in
shear flows and in fully developed turbulence, as will be discussed
in this review.

At the time of their note, the main general results for the linear
stability of shear flows were Rayleigh, Fjertoft and Howard crite-
ria [2]. Rayleigh'’s criterion states that a necessary condition for the
instability of a parallel shear flow is that the basic velocity profile
has an inflection point [3]. Later Fjortoft [4] showed that the vor-
ticity needs to have a maximum at the inflection point. Howard [5]
proved that the complex phase velocity of an exponential wave
must lie within a semi-circle having a diameter equal to the differ-
ence between the largest and the smallest velocity of the parallel
base flow. These theorems are valid in an inviscid and not stratified
fluid and were obtained by considering two-dimensional infinites-
imal perturbations, i.e. directly from the linearized Rayleigh equa-
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tion for the stability of a parallel shear flow. Squire’s theorem [128]
states that two-dimensional disturbances are the first to become
unstable in parallel shear flows and thus they determine the crit-
ical Reynolds number; this had restricted the stability analyses to
two-dimensional normal modes (exponential growth or decay of
periodic waves).

Ellingsen and Palm’s fundamental contribution is to show that
three-dimensional disturbances may lead to an instability other
than modal, independent of the existence of an inflection point.
They note how this instability can be responsible for transition
to turbulence and acknowledge previous suggestions by Hgiland
(referring to some unspecified lecture notes), who, however, did
not draw full conclusions from his idea. Indeed, this new mechanism
is able to explain transition in subcritical conditions or in stable
flows as in the case of pipe flow [6].

We will shortly outline here the original derivations and denote
a parallel velocity profile as U = (U,V,W) = (U(y),0,0)
where U is the streamwise velocity component and y and z the
cross-stream coordinates. Considering an inviscid, incompressible
and not stratified flow bounded by two parallel planes and a
disturbance independent of the streamwise coordinate x, the
equation for the streamwise component of the momentum and for
the streamwise vorticity component reduce to

% =0; % =0. (1)

Dt Dt

Introducing a streamfunction ¥ for the cross-stream components,
v v

V= E, = — @,
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and linearizing one obtains

ou n du 0 2)
= =

at dy

for the streamwise disturbance velocity and

a

— V2@ =0 3
o Vi (3)

for the cross-stream flow, where V# is the two-dimensional Lapla-
cian. From Eq. (3), we see that the cross-stream velocity com-
ponents are independent of time, i.e. a streamwise independent
perturbation v will not grow or decay in an inviscid flow. Eq. (2)
can be integrated

du
u=u) —v—t (4)
dy

to show that the perturbation u grows linearly in time, from which
also the name of algebraic inviscid instability. It is hence shown
that any shear flow U(y) is unstable to streamwise independent
disturbances in the cross-stream velocity components.

This first part of the original paper, based on a linear analysis,
is probably the most known and commonly used as a reference
for the optimal transient growth of x-independent perturbations
in viscous flows; see Schmid and Henningson [7] and discussion
below. Indeed, we will see that infinitely long streamwise vortices
are the most dangerous initial conditions in shear flows: they
lead to the formation of streamwise streaks, elongated regions
of positive and negative streamwise velocity, by redistributing
streamwise momentum across the shear layer.

Ellingsen and Palm, in addition, show that Eq. (1) can be
solved also for finite-amplitude perturbations. The conservation of
streamwise vorticity can be re-written as

05 oo _, oo _,
—Vi¥+ ——Vi¥ — ———Vi¥ =0, (5)
at 0z dy dy 0z
which admits solution of the form
) ow
Viv¥ =f¥), Er =0, (6)

with f an arbitrary function. If f is a linear function, the cross-
stream motion is represented by a set of closed streamlines. The
conservation of momentum in the streamwise direction then im-
plies that velocity u is conserved during the motion along these
closed streamlines. A fluid particle in its orbit in the x-y plane will,
therefore, have a u velocity equal to the value of the basic flow at
the initial position of that particle. This value will be different from
the initial local value of u, the more the larger the vertical particle
displacement in a homogeneous shear. As the period can be dif-
ferent along different streamlines, the motion is aperiodic with a
complete redistribution of streamwise momentum. This is inde-
pendent of the initial disturbance amplitude and may lead to large
velocity gradients that, in turn, can support new instabilities: It is
possible of course that the developed motion is unstable. Owing to the
large vorticity concentrations this indeed seems very likely so that the
motion already discussed is valid only for a short span of time. This
is indeed what happens in the case of secondary streak instability,
where an inflectional type of instability develops on the regions
of largest vorticity induced by streamwise elongated perturba-
tions [8-10]. However, the vertical displacement of fluid particles
by the cross-stream momentum is not observed only for a short
time, as cautiously stated by Ellingsen and Palm. This is a key ingre-
dient not only for the breakdown to turbulence but also in the dy-
namics of wall-bounded turbulence, as we will show in this review.

Ellingsen and Palm conclude that, despite their analysis is lim-
ited to the case of streamwise independent disturbances, the equa-
tions are valid also when the base flow has an angle with the

x-direction, U = (U(y), 0, W(y)). For small angles, the physical
mechanisms at play (cross-stream displacement of fluid particles
that retain their horizontal momentum) are the same. For larger
angles, however, the variations of the streamwise velocity u are
much smaller as the disturbance field has a component in the
x-direction. This seminal paper ends by stating that by same reason-
ing we obtain the result that an inviscid channel flow is always unsta-
ble for perturbations independent of the streamwise coordinate. This
explains the first stage of the subcritical transition to turbulence
in pipe flow, a problem that puzzled scientists for over a century
[11,12]. Indeed the lift-up effect becomes the only responsible for
disturbance energy growth when no other modal instabilities are
present.

1.2. Early inviscid studies

In a review paper from 1969 about shear-flow turbulence,
Phillips reports a previous analysis by Moffatt aiming to explore
whether a disturbance can maintain itself by interactions with the
mean shear [13,14]. Considering the interactions between middle-
size eddies and a uniform shear flow, U = Sy, Moffatt de-
termined solutions of the linearized Navier-Stokes equations for
three-periodic velocity perturbations and pressure

u; = Ai(t) expli(k(t) - x)];  p = m(t) exp[i(k(t) - x)] (7
with wavenumber
k(t) = (ky, ky, k;) = [kx(0), ky(0) — Stky(0), k,(0)]. (8)

The latter expression indicates that each Fourier component is
tilted by the shear, where the lines of constant phase move closer
together and rotate until they become asymptotically parallel to
the planes defined by a constant value of coordinate y. Moffatt also
derives a dynamical equation of the velocity amplitudes A; and
shows that for streamwise independent modes (ky = 0) the so-
lution can be written as

Ax(t) = Ax(0) — StA,(0);  Ay(t) = Ay(0) 1 Az (t) = A(0). (9)

The streamwise velocity perturbation grows linearly in time if the
initial disturbance has a non-zero component in the wall-normal
direction, as shown by Ellingsen and Palm for a bounded shear
flow and any general disturbance shape in the linear and nonlinear
regimes. A superposition of periodic disturbances evolves towards
a series of horizontal structures with vanishing cross-stream ve-
locity components and vanishingly small scales in the y-direction,
something which would accelerate viscous dissipation. Moffatt
calculated the Reynolds stress associated to these structures and
showed that the flow will asymptotically tend to one dominated
by large-scale structures, independent of the x-coordinate. Phillips
notes in his review that the disturbance amplification computed
by Moffatt corresponds to cross-stream displacement of fluid par-
ticles retaining their original streamwise momentum but this can-
not explain how turbulence is sustained although there is abun-
dant evidence of the presence of such elongated structures in wall
turbulence. Studies of homogeneous-shear turbulence shed any-
way light on the energy transfer among Fourier modes represented
by the tilting of the disturbance and the lifting of the elongated
streaks observed in turbulence.

As mentioned above, the historical basis for the paper by
Ellingsen and Palm was the work on hydrodynamic stability by
Palm’s mentor Einar Hgiland. Remarkably, Palm’s paper was his
last contribution to the stability analysis of homogeneous fluids.
Nobody in Norway followed up this research. This was however
continued in Sweden, due to the influence of Palm’s friend, Marten
Landahl. Few years later, Landahl [15] studied the dynamics of
shear flow turbulence and the burst events, always associated to
a low-speed streak lifting from the surface and forming locally a
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