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a b s t r a c t

In the diffraction of water waves by fixed bodies, the scattered waves propagate outward in the far field
and attenuate with increasing distance from the structure. ‘Cloaking’ refers to the reduction in amplitude
or complete elimination of the scatteredwaves. Thepossibility of cloaking is of both scientific andpractical
interests.

Cloaking is considered here for a circular cylinder on the free surface, surrounded by one or more
additional bodies. Linearized time-harmonic motion is assumed. A numerical procedure is used to
optimize the geometry of the surrounding bodies, so as to minimize the energy of the scattered waves.
Values of the scattered energy are achieved which are practically zero at a specific wavenumber, within
the estimated numerical accuracy. This provides tentative support for the existence of perfect cloaking,
and conclusive evidence that structures can be designed to have very small values of themean drift force.

© 2013 Elsevier Masson SAS. All rights reserved.

Dedicated to the memory of Enok Palm, an inspiring colleague and friend

1. Introduction

In the three-dimensional diffraction problem, where plane
waves are incident upon a fixed structure, scattered waves gen-
erally exist in the far field. The word ‘cloaking’ is used in various
fields of wave motion to refer to the reduction in amplitude or
complete elimination of the scattered waves. This is achieved by
modifying the shape of the structure or the properties of the sur-
rounding medium. ‘Perfect cloaking’ refers to the condition where
there are no scattered waves in any direction. The possibility of
perfect cloaking in the diffraction of water waves is of scientific in-
terest, since it is not known if this condition can be achieved with
a structure of non-zero volume on or near the free surface.

Cloaking may also have practical applications in the design of
offshore structures, particularly with respect to the mean drift
force. When scattering occurs the time-averaged second-order
pressure exerts a steady drift force on the structure, in the direction
of propagation of the incident waves. This drift force can be related
by momentum conservation to the amplitude of the scattered
waves. Thus the mean drift force is zero if there are no scattered
waves.

Energy is transported by the scattered waves as they propagate
outward on the free surface. The total scattered energy is defined
here as the integral of the rate of energy flux across a control sur-
face surrounding the structure. In an ideal fluid themean rate of en-
ergy flux is constant, independent of the control surface. Since the
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energy is proportional to the square of the wave amplitude it fol-
lows that the amplitude is proportional to the inverse square-root
of the radius. If there are no scattered waves the scattered energy
is equal to zero. Thus the scattered energy is an appropriate mea-
sure of cloaking, analogous to the scattering cross-section in other
fields.

Cloaking a bottom-mounted circular cylinder has been consid-
ered by Porter and Newman [1–3], using an annular bed with a
variable depth to refract thewaves around the cylinder. Their com-
putations show that near-zero values of the scattered energy can
be achieved by optimizing the bathymetry of the bed. However the
use of variable bathymetry may be impractical, especially in deep
water. Thus the present work considers the possibility of cloaking
a circular cylinder which is fixed on the free surface in a fluid of in-
finite depth, by surrounding it with one or more outer bodies. The
dimensions of the inner cylinder are fixed, and the scattered en-
ergy is minimized at a value of the frequency where the product of
the wavenumber and the cylinder draft is equal to one. Linearized
time-harmonic motion of an ideal fluid is assumed.

Two specific types of surrounding structures are used to cloak
the inner cylinder. The first is an array of outer cylinders which
surround the inner cylinder, as shown in Fig. 1. This configuration
was suggested by the work of Farhat et al. [4], who showed that
a large number of small circular cylinders could be used to cloak
an inner cylinder in problems governed by the two-dimensional
wave equation. The second type is a continuous ‘ring’, such as
a torus with constant cross-section or a non-axisymmetric body
with varying cross-section. This type was suggested by the results
for the arrays of cylinders, where the scattered energy is reduced
progressively by increasing thenumber of cylinders anddecreasing
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Fig. 1. Perspective view of the structure withM = 64 outer cylinders and N = 15
optimization parameters. Only the submerged surfaces are shown, with the upper
edge of each cylinder in the plane z = 0.

their spacing. For both types it is shown that the scattered energy
can be reduced to very small values by optimizing the dimensions
and shape of the surrounding structure.

The structures are assumed to be symmetric about the planes
x = 0 and y = 0, where the x-axis is in the direction of
incident-wave propagation. Symmetry about x = 0 is suggested by
reversing time (or conjugating the solution of the boundary-value
problem with complex time-dependence). Thus, for any structure
with no scattered waves, there also are no scattered waves if the
incident-wave direction is reversed. This implies that the structure
itself should be symmetric about x = 0. Symmetry about y = 0 is
more obvious, since the incident-wave field is independent of y.

Preliminary results, which are more limited and less accurate,
have been presented in [5]. The possibility of perfect cloaking
with an axisymmetric structure was considered there. The results
in [5] suggest that this might be possible, although it would be
remarkable if perfect cloaking could be achieved with such a
structure. The results presented here, which are more accurate,
suggest that perfect cloaking can only be achieved with non-
axisymmetric structures.

The theory and computational method are described in Sec-
tions 2 and 3. Results for the two types of surrounding structures
are presented in Sections 4 and 5. These results are compared and
discussed in Section 6.

2. Theory

A fixed structure consisting of two or more rigid bodies is sit-
uated on the free surface of the fluid, which is inviscid, incom-
pressible, and extends to infinity in all horizontal directions. The
fluid depth is infinite. Cartesian coordinates x = (x, y, z) are used
with z = 0 the plane of the undisturbed free surface and z positive
upward. Harmonic time-dependence is assumed, with the velocity
potential

Φ(x, t) = Re

φ(x)eiωt


. (1)

Here t represents time,ω is the radian frequency, andφ is complex.
The potential is a solution of the Laplace equation

∇
2φ = 0 (2)

in the fluid domain. Small amplitude motions are assumed, justi-
fying the linearized free-surface boundary condition

Kφ − φz = 0 on z = 0, (3)

where K = ω2/g is the wavenumber and g is the gravitational
acceleration. Subscripted lower-case letters denote partial differ-
entiation. Since the fluid velocity vanishes at large depths,

∇φ → 0 as z → −∞. (4)

In the diffraction problem the structure is fixed, with plane
progressive waves of amplitude A incident upon it. The Neumann

boundary condition

φn = 0 (5)

is applied on the submerged surface S of the structure. The
subscript n denotes the normal derivative, with n positive in the
direction out of the fluid domain. The potential is defined in the
form

φ = A(φI + φS) (6)

where φI is the incident-wave potential and φS is the scattering
potential, both for unit amplitude A. Without loss of generality it
can be assumed that the incident waves propagate in the positive
x direction, and thus

φI =
g
ω

eKz−iKx. (7)

The boundary-value problem is completed by imposing the
radiation condition in the far-field, which can be expressed in the
form

φS ≃
g
ω

H(θ)
√
2πKR

eKz−iKR−iπ/4 as R → ∞. (8)

Here (R, θ) are polar coordinates with x + iy = Reiθ . The function
H(θ), which represents the amplitude of the scattered waves, is
known as the Kochin function. Following the analysis in [6], the
Kochin function can be evaluated by applying Green’s theorem,
with the result

H(θ) =
ωK
g


S


φSn − φS

∂

∂n


eKz+iK(x cos θ+y sin θ) dS. (9)

The normalized rate of scattered energy is given by the dual
relations

E =
1
2π

 2π

0
|H(θ)|2dθ = −2Im {H(0)} . (10)

The equivalence of these two relations follows from Green’s
theorem, as shown in [6], ormore physically from the conservation
of energy applied to the total potential (6). In other types of wave
diffraction this equivalence is known as the optical theorem.

If the structure is symmetric about x = 0, the symmetric and
anti-symmetric components of the potential φS satisfy Neumann
boundary conditions on the body where the normal derivatives
are real and imaginary, respectively. If there is no scattered
energy these potentials vanish at infinity faster than a radiated
wave, and satisfy the homogeneous boundary condition (3) on
the free surface. It follows that the symmetric and anti-symmetric
components of the potential are respectively real and imaginary
throughout the fluid domain, assuming uniqueness. This property
has important effects on themean second-order pressure and drift
force, as will be noted below.

3. Computational method

Our objective is to surround a prescribed inner body with one
or more outer bodies which are optimized to minimize the scat-
tered energy of the combined structure. The inner body is a circu-
lar cylinder with radius 0.5 m and draft 1.0 m. The optimization
is performed at the wavenumber K = 1, using non-dimensional
parameters normalized by the unit draft. The energy E is normal-
ized by the corresponding value for the uncloaked cylinder, E0 =

0.0727344. The energy ratio E/E0 is defined in this manner.
The computational approach combines a three-dimensional ra-

diation–diffraction code based on the boundary-integral-equation
method (BIEM) with a multi-variate optimization code (PRAXIS).
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