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a b s t r a c t

Analytical approaches to nonlinear and linear sloshing problems need to knowapproximate natural slosh-
ing modes expressed by continuously-differentiable harmonic functions. A new method for constructing
those approximate modes as well as for a fast computing of the corresponding natural sloshing frequen-
cies is proposed in the two-dimensional case. The method facilities a parametric study of the natural
sloshing frequencies in a prismatic tank associated with LNG (Liquefied Natural Gas) containers. The re-
sults are extensively compared with other approximate analytical solutions.
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1. Introduction

Finding the natural sloshing frequencies and modes is an im-
portant task in marine and spacecraft applications. Analytical so-
lutions of the corresponding spectral boundary problem are a rare
exception [1, ch. 4]; [2, ch. 1] and Finite Element and/or Bound-
ary Element methods [1, ch. 10]; [3] are traditionally employed.
Analytical approaches to linear and nonlinear liquid sloshing prob-
lems yield specific requirements to approximate natural slosh-
ing modes. Even though the natural sloshing modes are formally
defined in the mean liquid domain, the nonlinear multimodal
method needs, for example, analytically-expressed continuously-
differentiable harmonic natural sloshing modes which are contin-
uously expandable above the mean liquid domain. The traditional
numerical methods are then not applicable. A review on analyti-
cal approximate methods producing the analytically approximate
natural sloshing modes is given by the authors in [1]. Interested

∗ Corresponding author. Tel.: +47 735 955 26.
E-mail addresses: odd.faltinsen@ntnu.no (O.M. Faltinsen),

alexander.timokha@ntnu.no (A.N. Timokha).

readers can also find extensive discussions on these methods in
[4–6] (in the context of specific tank shapes).

The present paper constructs an approximate Trefftz solution
of the two-dimensional natural sloshing problem. The solution ap-
pears as a linear combination of the so-called harmonic polyno-
mials and their generalizations. The harmonic polynomials are a
well-known instrument of different numerical methods, e.g., the
Harmonic Polynomial Cell (HPC) method developed recently for
surface wave problems [7]. The polynomials constitute a complete
harmonic basis in the star-shaped domains [8–10]. The Trefftz so-
lution is adopted by three alternative projective schemes which
provide a fast computing of the corresponding natural sloshing fre-
quencies.

Numerical experiments in [11, Sections 18, 26, and 27] with di-
verse harmonic functional base in projective [variational] schemes
showed that a naive usage of these base in sloshing problems may
not be efficient and/or accurate when the basic functions are not
a priori constrained to a boundary condition and do not possess
the corner-point asymptotic behavior at the contact line corner.
We were familiar with this fact when working on [12] where ap-
proximate Trefftz-type natural sloshing modes were found for a
two-dimensional circular tank. In that paper, we have constructed
and employed two different harmonic functional sets, ‘regular’ and
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Fig. 1. Themean liquid domain Q0 is bounded by themean free surface Σ0 and the
mean wetted tank surface S0 composed from Ns smooth curves S0i, i = 1, . . . ,Ns .
The Oy axis is superposed with the interval Σ0 : {z = 0, −y0 < y < y0}, so that
the origin O is at the interval middle. The inner angles 0 < θ± < π at the corner
points (±y0, 0) are formed by S0 and Σ0 .

‘singular’ at the contact corner points, so that they both a priori
satisfy the zero-Neumann boundary condition on the mean wet-
ted tank surface. The ‘singular’ functional set also possesses the
corner-point asymptotics. A straightforward generalization of [12]
can be based on the conformal mapping as proposed, e.g., in [13],
where the Christoffel–Schwarz transformation is employed to ap-
proximate the mean liquid domain by a polygon. However, using
the complex variables cannot provide, in general, an explicit har-
monic expression of real variables for approximate natural slosh-
ing modes. To get the needed analytically-expressed approximate
natural sloshing modes, we have to follow an alternative way. Fur-
thermore, we need in the future to generalize the method to the
three-dimensional case. The present approach, generally, allows
for that.

Section 2 formulates the problem. In Section 3, we construct
two κ-families of harmonic functions in which the positive real
number κ is associated with the spectral parameter proportional
to the square of the natural sloshing frequency. The harmonic func-
tions satisfy the spectral boundary [Robin] condition on the mean
free surface. The first family is the harmonic polynomials but the
second one possesses the asymptotic behavior of the eigenfunc-
tions at the intersection points of the mean free surface and the
wetted tank walls. A linear combination of the harmonic functions
with unknown weight coefficients constitutes an approximate Tr-
efftz solution of the original spectral boundary problem. To find κ
and theweight coefficients, we employ three alternative projective
schemes described in Sections 4.1–4.3, respectively. The schemes
are efficient for computing the lower natural sloshing frequencies
and modes. Their advantages and disadvantages are extensively
discussed. In Section 4.4, the projective schemes are verified by
comparison with analytical and numerical solutions.

The approximate Trefftz solution is employed in Section 5 for
a parametric study of the lowest natural sloshing frequencies for
a two-dimensional prismatic tank associated with LNG (Liquefied
Natural Gas) containers. The Trefftz approximations of the
nondimensional spectral parameter κ play the role of reference
values which are compared with approximate κ following from
other, simplified analytically approximate solutions and estimates.
The latter includes the shallowwater approximation, Faltinsen and
Timokha formula [1, ch. 4], and novel approximate formulas firstly
derived in the present paper. Based on the parametric study, we
formulate a guidance for practically-oriented readers who want
to estimate the lowest natural sloshing frequencies for a two-
dimensional prismatic tank without involving a numerical solver
of the original spectral boundary problem.

2. Statement of the problem

The task consists of constructing analytically approximate
natural sloshing modes ϕ (defined within to a multiplier) and
frequencies σ =

√
g κ̄ (g is the gravity acceleration) which are the

eigensolution of the spectral boundary problem

∇
2ϕ = 0 in Q0;

∂ϕ

∂n
= 0 on S0;

∂ϕ

∂n
= κ̄ϕ on Σ0;


Σ0

ϕdS = 0.
(1)

Here, Q0 is the mean liquid domain, S0 is the mean wetted tank
surface, and Σ0 is the mean liquid surface (see, Fig. 1). Henceforth,
we assume that Q0 is the star-shaped domain relative to the origin
O (the star-shaped domain means that for any point q in Q0, the
line segment joining O and q lies entirely within Q0). The origin
O is superposed with the middle of Σ0 : {z = 0, −y0 < y < y0}.
Furthermore, themeanwetted tank surface S0 is constituted by the
smooth finite length curves S0i, i = 1, . . . ,Ns. The inner angles
0 < θ± < π at the corner points (±y0, 0) are due to intersection
of S0 and Σ0. Interior corner points are possible.

The spectral boundary problem (1) will be considered in
the nondimensional statement for which the characteristic spatial
dimension is associated with the half of the maximum horizontal
tankwidth, a =

1
2 l (see, Fig. 1). Thismeans that the nondimensional

spectral parameter κ computes the circular natural sloshing
frequencies by the formula

σ =

gκ/a. (2)

We will construct the κ-families of harmonic functions which
satisfy the Robin [spectral] condition on Σ0 within a real positive
number κ . The families are the harmonic polynomials and their
‘singular’-type generalization possessing the corner-point asymp-
totics at (±y0, 0). A finite sumby these functions (within unknown
weight coefficients) gives an approximate Trefftz solution of (1)
providing the Laplace equation and the Robin condition on Σ0 are
a priori satisfied. To approximate the zero-Neumann condition on
S0 and, thereby, find the spectral parameter κ and the unknown
weight coefficients in the Trefftz solution, we will adopt three al-
ternative projective schemes.

3. Harmonic functional base and the approximate Trefftz
solution

3.1. Harmonic polynomials as a ‘regular’ functional basis

The so-called harmonic polynomials are polynomials by spatial
coordinates which satisfy the Laplace equation. They constitute a
complete harmonic functional basis in the star-shaped domains
(relative to the origin). The completeness theorems can be
found in [8,9] (see, also references in [10]). The two-dimensional
harmonic polynomials are

w(1)
n = ρn cos(nθ) and w(2)

n = ρn sin(nθ), n = 0, 1, . . . , (3)
rewritten frompolar (ρ, θ) to the Cartesian coordinate systemOyz.
The polynomials w

(1)
n (y, z) and w

(2)
n (y, z) can be derived via the

recursive relations

w
(1)
0 = 1; w

(2)
0 = 0; w(1)

n = yw(1)
n−1 − zw(2)

n−1;

w(2)
n = yw(2)

n−1 + zw(1)
n−1, n ≥ 1.

(4)

The first-order spatial derivatives of w(1)
n and w

(2)
n read as

∂w
(1)
n

∂y
= nw(1)

n−1;
∂w

(2)
n

∂y
= nw(2)

n−1,

∂w
(1)
n

∂z
= −nw(2)

n−1;
∂w

(2)
n

∂z
= nw(1)

n−1, n ≥ 1.

(5)
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