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h i g h l i g h t s

• Travelling and fully reflected solitonic waves are propagated numerically.
• A first approach solves numerically the fully nonlinear potential equations.
• A second one is based on the solution of the Green–Naghdi system of equations.
• Bottom pressure distributions and runup heights obtained are analysed and compared.
• Green–Naghdi equations predict satisfactorily the evolution of the bottom pressure.

a r t i c l e i n f o

Article history:
Received 14 November 2013
Received in revised form
20 March 2014
Accepted 22 March 2014
Available online 2 April 2014

Keywords:
Bottom pressure distribution
Dispersion influence
Travelling waves
Reflected waves

a b s t r a c t

The bottom pressure distribution under solitonic waves, travelling or fully reflected at a wall is analysed
here. Results given by two kind of numerical models are compared. One of the models is based on
the Green–Naghdi equations, while the other one is based on the fully nonlinear potential equations.
The two models differ through the way in which wave dispersion is taken into account. This approach
allows us to emphasize the influence of dispersion, in the case of travelling or fully reflected waves.
The Green–Naghdi model is found to predict well the bottom pressure distribution, even when the
quantitative representation of the runup height is not satisfactorily described.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The description of the bottom pressure distribution beneath
nonlinear surfacewaves has severalmotivations. Among thesemo-
tivations, bottom pressure sensors have long been used to mea-
sure surface waves, mainly in the low-frequency range. In the
case of very long waves, like tides and tsunamis, the pressure is
hydrostatic, and recovering of surface elevation from the data of
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bottom sensors is quite straightforward.Windwaves, however, are
not long even in the coastal zone, and non-hydrostatic (dispersive)
corrections play a significant role. Spectral methods, based on
transfer functions, are often used to reconstruct the water eleva-
tion taking into account the assumption of linearity of waves [1–8].
Meanwhile, the linear hypothesis does not hold when the ampli-
tude of the waves increases, and as it is shown in [3], the linear
prediction for largest waves underestimates the results of about
15%. The pressure under nonlinear progressive periodic and soli-
tary waves is found in [9–11], and a map from pressure to surface
is presented in [12–14].

The wave behaviour near the coast (cliffs or vertical barriers)
in the process of the wave reflection is more complicated. For in-
stance, the relation between wave elevation and bottom pressure
is not straightforward, due to the interaction of the incident and
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reflected waves [15]. Furthermore, the head-on-head collision of
solitary waves or the soliton reflection from the wall is not elas-
tic, and a dispersive tail appears behind the soliton [16–22]. If the
solitary wave has large amplitude, near the wall the wave ampli-
tude in the resulting field may exceed the limiting value and the
instability on the wave crest induces the highest slash on such
walls [23]. In such conditions, a thin jet generated on the crest of
collidingwaveswas observed numerically in [24], where a detailed
study of the collision of high amplitude solitary waves is provided.
This jet on the crest of colliding waves should lead to the signifi-
cant decreasing of the pressure and therefore in the wave action
on the wall, but the pressure in such nonlinear wave field, in our
knowledge, has not been studied yet.

The question of modelling bottom pressure distribution un-
der nonlinear water waves is often important in problems involv-
ing wave propagation, transformation, and beach runup in fairly
large and complex areas. The computational cost inherent to such
problems being extremely important, the knowledge of simplified
models is essential for simulation purposes. Indeed, since the In-
dian Ocean tsunami of 2004, it became obvious that nonlinear and
dispersive effects could play a major role in such processes. Re-
cent progress in Boussinesq-Typemodels allowed them to describe
these effects better. This is why several of these models (FUN-
WAVE, COULWAVE, GloBouss) nonlinear and dispersive are often
used to model tsunami waves. These tsunamis might be of seismic
origin [25], generated by submarine landslides [26], due to volcanic
eruptions [27], or even storm induced [28].

Still, the limitations of these methods are known. The classical
equations (see, for example, [29]) incorporate only weak disper-
sion and weak nonlinearity, and in practice their range of appli-
cability is limited to kh < 0.75. This shortcoming has attracted
considerable attention in the recent past, period during which a
number of enhanced and higher-order Boussinesq equations have
been formulated to improve both linear and nonlinear proper-
ties. Unfortunately,many of thesemodels are numerically unstable
when dealingwith largewaves [30]. Thus, Boussinesq-typemodels
of various levels of nonlinearity and dispersion are studied theoret-
ically, using and validating several theories [31].

The Green–Naghdi model was the first model taking the full
nonlinearity into account, in the framework of weak dispersion.
Thismodel is of particular concernwhen studying Boussinesq-type
models, due to its specific mathematical properties. Indeed, as it
is pointed out by Le Metayer et al. [32], the mathematical found-
ing principles of this system are rather strong. The derivation of
the Green–Naghdi model was achieved through a variational for-
mulation of the Euler equations by Miles and Slmon [33]. A math-
ematical justification of the Green–Naghdi model was performed
by Makarenko [34], and Alvarez-Samaniego and Lannes [35]. Ca-
massa et al. [36] proposed a Hamiltonian formulation of the
Green–Naghdi model.

From a physical point of view, the Green–Naghdi system of
equations was studied in various contexts, and it was shown to
predict important features of the flow (excluding wave breaking)
accurately over a wide range of parameters (see for instance [37]).
This system of equations is also used to describe two-layer flows.
In this framework, it is named the Choi–Camassa system.

The main goal of the given paper is to analyse the ability of the
Green–Naghdi model to describe bottom pressure variation in the
process of the soliton reflection from a vertical wall. This analysis
is performed numerically in the framework of fully nonlinear Euler
equations (Section 2) and the weakly dispersive fully nonlinear
Green–Naghdi system (Section 3). Results of computations for
travelling and reflected waves are discussed respectively in
Sections 4.1 and 4.2.

2. Numerical solution of the fully nonlinear equations

2.1. Basic equations of the problem

The problem is solved by assuming that the fluid is inviscid,
incompressible, and themotion irrotational. Thus, the velocity field
is given by u = ∇φ, where the velocity potential φ(x, z, t) satisfies
Laplace’s equation. The domain is bounded by the free surface, a
horizontal solid bottom and two vertical solidwalls. The horizontal
and vertical coordinates are x and z respectively whereas t is
the time. The still-water level lies at z = 0, and the horizontal
impermeable bed is located at z = −H . The dynamic free surface
condition states that the pressure at the surface, z = η(x, t), is nil.
Assuming the free surface to be impermeable, the problem to be
solved is Laplace’s equation with the kinematic and dynamic free
surface boundary conditions, and the bottom boundary condition.

∆φ = 0 in − h ≤ z ≤ η(x, t),
∂η
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+

∂φ

∂x
∂η

∂x
=

∂φ

∂z
on z = η(x, t),

∂φ

∂t
+

(∇φ)2

2
+ gη = 0 on z = η(x, t),

∂φ

∂z
= 0 on z = −H

(1)

g being the acceleration due to gravity and ρ the water density.
Once the velocity potential and its gradient are known in the fluid,
the bottom pressure is obtained by using Bernoulli’s equation
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on z = −H. (2)

2.2. Numerical approach

A Boundary Integral Equation Method (BIEM) is used to solve
the system of equations (1) with a mixed Euler Lagrange (MEL)
time marching scheme. Full details of this numerical approach can
be found in [38]. This method was already used to investigate the
propagation of solitonic waves in [24].

The method is based on the use of Green’s second identity, to
solve Laplace’s equation for the velocity potential.

∂Ω

Φ(P)
∂G
∂n

(P,Q)dℓ −


∂Ω

∂Φ

∂n
(P)G(P,Q)dℓ = c(Q)Φ(Q), (3)

where G is the free space Green’s function. The fluid domain
boundary ∂Ω is ∂ΩB∪∂ΩF , which correspond respectively to solid
boundaries and to the free surface boundary. Since P and Q refer to
two points of the fluid domain, and since c(Q) is given by

c(Q) =

0 if Q is outside the fluid domainΩ

α if Q is on the fluid boundary ∂Ω

2π if Q is inside the fluidΩ,
(4)

a discretization of this integral equation can be obtained. Time
stepping is performed by means of a fourth order Runge &
Kutta scheme, with a constant time step. The bottom pressure is
calculated by using a finite-difference method.

2.3. Initial condition

We consider a rectangular wave tank of length L and constant
depth h with two vertical solid walls located at its ends. The hor-
izontal length of the domain, L, is assumed to be large enough to
avoid any perturbation generated from the vertical walls during
the computational time of the simulations. For the results concern-
ing propagativewaves, a single solitarywave is considered, initially
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