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a b s t r a c t

A theoretical investigation of the electrophoresis of a dielectric colloidal sphere located at an arbitrary
position inside a charged spherical cavity filled with an ionic fluid is presented. The applied electric field
is perpendicular to the line through the centers of the particle and cavity, and the electric double layers
adjacent to the solid surfaces are assumed to be much thinner than the particle radius and any gap width
between the surfaces. The general solutions to the Laplace and Stokes equations governing the electric
potential and fluid velocity fields, respectively, are established from the superposition of their basic so-
lutions in the two spherical coordinate systems about the two centers, and the boundary conditions are
satisfied by amultipole collocationmethod. Results for the translational and angular velocities of the con-
fined particle are obtained for various cases. When the particle is positioned at the center of the cavity,
these results are in excellent agreement with the available analytical solution. The effects of the cavity
wall on the electrokinetic motion of the particle are interesting, complicated, and significant. In general,
the electrophoretic translational/rotational mobility of the particle decreases/increases with increases in
the particle-to-cavity radius ratio and the relative distance between the particle and cavity centers (the
direction of rotation is opposite to that of a corresponding settling particle), but there exist some ex-
ceptions. The direct and recirculating cavity-induced electroosmotic flows can strengthen or weaken the
electrophoretic translation and rotation of the particle and even reverse their directions, depending on
the cavity-to-particle zeta potential ratio and geometric parameters. The effect of the cavity wall on the
electrokinetic translation of a particle perpendicular to the line connecting their centers is slightly weaker
than that parallel to this line.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Electrophoresis, which refers to the migration of a charged col-
loidal particle in an ionic fluid caused by an external electric field,
has been widely applied to the particle characterization and sepa-
ration in many physicochemical and biomedical systems. The im-
posed electric field interacts with the particle’s surface charge and
drives the particle to undergo electrophoretic motion in one direc-
tion and the fluid in the surrounding, oppositely charged double
layer tomove relative to the particle by electroosmosis in the other
directions simultaneously. The electrophoretic velocity of a dielec-
tric particle of arbitrary shape in an unbounded fluid is given by
the Smoluchowski equation [1,2],

U0 =
εζp

η
E∞, (1)
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provided that the thickness of the electric double layer is much
smaller than the local radii of curvature of the particle. In Eq. (1),
the constants η, ε, ζp, and E∞ are the fluid viscosity, fluid per-
mittivity, particle zeta potential, and applied electric field, respec-
tively.

In practical applications of electrophoresis, colloidal particles
are not isolated and will move in the presence of confining bound-
aries, such as electrodes [3,4], capillaries or orifices [5,6], gels
or membranes [7,8], interstices of porous composites [9,10], mi-
crochannels [11–13], and spherical cavities for the Gyricon display
[14,15]. Also, the Debye screening length (thickness of the electric
double layer) usually has the order of several to tens nanometers,
which is much less than the typical particle and boundary sizes.
Therefore, the boundary effects on electrophoresis of colloidal
spheres with thin double layers are essential and have been stud-
ied for various cases of boundaries, including a conducting [16–19]
or insulating [19–21] plane wall, two parallel plane walls [22–25],
a circular cylindrical pore [26–28], a circular orifice or disk [29],
and a concentric spherical cavity [30,31].

The model of a charged sphere undergoing electrophoresis
within a nonconcentric spherical cavity can be applied for the
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relevant movement of colloidal particles in media or microchan-
nels constituted by connecting spherical pores. Recently, the elec-
trophoretic migration of a dielectric spherical particle positioned
arbitrarilywithin a charged spherical cavity along the line connect-
ing their centers was examined for the case of thin double layers
through the use of a combined analytical–numericalmethodwith a
boundary collocation technique, and accurate results of the particle
mobilitywere obtained (therewasnoparticle rotation owing to the
axial symmetry in the charge and fluid flows) [32]. The object of the
present article is to investigate the complementary electrophoretic
motion of a spherical particle inside a spherical cavity subject to
an applied electric field perpendicular to the line of their centers.
The Laplace and Stokes equations will be solved for the electric po-
tential and fluid velocity distributions (which are not axially sym-
metric), respectively, by using the boundary collocation method
and the translational and rotational velocities of the confined par-
ticle are obtained with good convergence. Because the governing
equations for the general problem of electrophoretic motion of a
spherical particle within a spherical cavity in an arbitrary direc-
tion are linear, its solution can result from the vectorial addition
of the solutions for its two subproblems: migration along the line
connecting the particle and cavity centers, which was dealt with
previously [32], and motion perpendicular to this line, which is
managed in the current work.

2. Analysis

Consider the quasi-steady electrophoresis of a dielectric spher-
ical particle of radius a and zeta potential ζp at an arbitrary posi-
tion inside a spherical cavity of radius b and zeta potential ζw filled
with an electrolytic solution, as illustrated in Fig. 1. Here (x, y, z),
(ρ, φ, z), and (r2, θ2, φ) are the Cartesian, circular cylindrical, and
spherical coordinate systems, respectively, with the origin at the
cavity center, and (r1, θ1, φ) represent the spherical coordinates
originating from the particle center located away from the cavity
center in the z direction at a distance d. The imposed electric field
(field in the absence of the particle) is uniform and equals E∞ex,
where ex is the unit vector in the x direction and E∞ is a constant.
The electric double layers adjacent to the particle surface and cav-
itywall are assumed to be very thin in comparisonwith the particle
radius and any spacing between the particle and cavity surfaces.
To obtain the translational and rotational velocities of the particle
within the cavity, the electric potential and velocity fields in the
fluid outside the thin double layers need to be determined first.

2.1. Electric potential distribution

The fluid outside the double layers is of constant conductivity,
electric neutrality, and uniform composition. Hence, the electric
potential distribution ψ is governed by Laplace’s equation,

∇
2ψ = 0. (2)

Because the particle is nonconductive, the boundary condition for
ψ at its surface is

∂ψ

∂r1
= 0 at r1 = a. (3)

The electric potential distribution over the cavity wall gives rise
to the applied electric field E∞ex when the particle is absent. Thus,
a legitimate choice of the boundary condition there is [31,33,34]

ψ = −E∞r2 sin θ2 cosφ at r2 = b, (4)

where ψ = 0 is set on the plane x = 0 without loss in general-
ity. On the other hand, onemay take the electric potential gradient
at the cavity wall equal to the applied electric field, and replace

Fig. 1. Geometrical sketch for the electrokinetic motion of a colloidal sphere in
a spherical cavity caused by an applied electric field perpendicular to the line
connecting the particle and cavity centers.

the Dirichlet boundary condition in Eq. (4) by the Neumann ap-
proach [30,35],

∂ψ

∂r2
= −E∞ sin θ2 cosφ at r2 = b. (5)

However, the tangential component of the electric potential gra-
dient at the cavity wall is not specified by this boundary condi-
tion. The Neumann condition in Eq. (5) is considered here only for
a comparison, perceiving that it is less correct than the Dirichlet
condition in Eq. (4).

The general solution to Eq. (2) satisfying the requirement that
the electric potential is finite for any position in the fluid phase can
be written as

ψ = E∞

∞
m=1

[S1mr−m−1
1 P1

m(µ1)+ S2mrm2 P1
m(µ2)] cosφ, (6)

where P1
m is the associated Legendre function of the first kind of

orderm and degree one,µi with i = 1 and 2 is used to denote cos θi
for brevity, and Sim are the unknown constants to be determined
using the boundary conditions at the particle and cavity surfaces.
In the establishment of Eq. (6), the general solutions to the linear
Laplace equation in two different spherical coordinate systems are
superimposed [36]. The solution forψ contains only the first-order
harmonics P1

m(µi) cosφ due to the axial symmetry of the two-
sphere geometry.

Substituting Eq. (6) into Eqs. (3)–(5), we obtain

∞
m=1

{(m + 1)S1ma−m−2P1
m(µ1)− S2m[δ(1)m (ρ, z)]r1=a} = 0, (7)

∞
m=1

{S1m[r−m−1
1 P1

m(µ1)]r2=b + S2mbmP1
m(µ2)}

= −b(1 − µ2
2)

1/2, (8)
∞

m=1

{S1m[δ(2)m (ρ, z)]r2=b + mS2mbm−1P1
m(µ2)} = −(1 − µ2

2)
1/2, (9)

where the functions δ(1)m and δ(2)m are defined by Eqs. (A.1) and (A.2)
in the Appendix. To use Eqs. (7)–(9), which are independent of the
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