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a b s t r a c t

The Stokes axisymmetrical flow problem of a viscous fluid sphere moving perpendicular to an imperme-
able bounding surface within a micropolar stagnant fluid as well as the related problem of a micropolar
fluid sphere moving perpendicular to an impermeable planar surface within a stagnant viscous fluid are
considered. The fluids are considered to be incompressible, and the deformation of the fluid particle is
neglected. A general solution is constructed from fundamental solutions in both cylindrical and spheri-
cal coordinate systems. As boundary conditions, continuity of velocity, continuity of shear stress and the
spin–vorticity relation at the droplet surface are applied. Also the no-slip andno-spin boundary conditions
are used at the impermeable plane surface. A combined analytical-numerical procedure based on collo-
cation technique is used. The drag acting, in each case, on the fluid particle is evaluatedwith good conver-
gence. Numerical results for the normalizedhydrodynamic drag force versus the relative viscosity, relative
separation distance between the particle and wall, micropolarity parameter (a viscosity ratio character-
izing micropolar fluids) and spin parameter (a non-dimensional scalar factor relating the microrotation
and vorticity at the droplet surface) are presented both in tabular and graphical forms. The results for the
drag coefficient are in good agreement with the available solutions in the literature for the limiting cases.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Several non-Newtonian fluidmodels have been proposed to de-
scribe fluids of microstructures. A physically relevant model that
has many applications is the micropolar fluid which was intro-
duced by Eringen in themiddle of 1960s [1,2]. Physically, amicrop-
olar fluid is a suspension of rigid, randomly oriented, particles [3].
In micropolar fluids, individual particles can rotate independently
from the rotation andmovement of the fluid aswhole and their de-
formation is neglected. Therefore, new variables which represent
angular velocities of fluid particles and new equations governing
this variable should be added to the conventional model.

The micropolar theory can be applied in an increasingly sig-
nificant number of cases in various scientific fields. Listed among
them are the study of lubricating fluids in bearings in lubrication
theory [3–5]. A micropolar fluid model also successfully describes
granular flow [6–9]. Actually, granular flows are flows which have
micro-structure and rotation of particles. Hayakawa [6] has re-
ported that the theoretical calculations of certain boundary value
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problems are in agreement with relevant experimental results of
granular flows. Eringen’s micropolar model includes the classical
Navier–Stokes equations as a special case, but can cover, both in
theory and applications, many more phenomena than the clas-
sical model. A comprehensive review of micropolar fluid the-
ory and some of its applications is presented in the textbook by
Łukaszewicz [3].

The theoretical study of the movement of fluid droplets in a
second immiscible fluid has grown out of the classical study of
Hadamard [10] and Rybczynski [11] of the translation of a fluid
sphere in an immiscible fluid. This problem is also treated by Hap-
pel and Brenner in their book [12]. Hetsroni and Haber [13] used
the method of reflection to solve the problem of a single droplet
submerged in an unbounded viscous fluid of different viscosity.
In practical situations of Stokes flow, particles or droplets are not
isolated, and the surrounding fluid is externally bounded by solid
or permeable walls. The hydrodynamic interaction between par-
ticles or droplets and a wall is of interest for various applica-
tions; e.g. sedimentation [14], motion of blood cells in an artery or
vein [15,16], and suspensions processing [17]. Therefore, it is re-
quired to determine whether the presence of neighboring bound-
aries considerably affects the movement of a particle or droplet.
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The interactions of a particle or a droplet with walls depend on the
particle shape, orientation, and position as well as the geometry of
the containing walls. Using spherical bipolar coordinates, Bart [18]
examined the motion of a spherical fluid drop settling normal
to a plane interface between two immiscible viscous fluids. Wa-
cholder and Weihs [19] also utilized bipolar coordinates to study
the motion of a fluid sphere through another fluid normal to a no-
slip or free plane surface; their calculations agree with the results
obtained by Bart in these limits. The parallel motion of a nearly
spherical drop between two channel walls in a quiescent fluid was
considered by Shapira and Haber [20] using the method of reflec-
tions. Approximate solutions for the hydrodynamic drag force ex-
erted on the droplet were obtained, which are accurate when the
drop-to-wall spacing is not small.

The boundary collocation method has been used by many au-
thors to solve flow problems in viscous fluids. Gluckman et al. [21]
developed a truncated series boundary collocation method to
study the unbounded axisymmetric multispherical Stokes flow.
The theoretically-predicted drag results are in good agreement
with experimentally measured values. Later, Leichtberg et al. [22]
extended the work of Gluckman et al. [21] to bounded flows for
co-axial chains of spheres in a tube. Ganatos et al. [23,24] mod-
ified the collocation series solution techniques to investigate the
Stokes flow of perpendicular and parallel motion of a sphere be-
tween two parallel plane boundaries. Boundary-collocation tech-
niques are used to examine the parallel and perpendicularmotions
of spherical drops moving near one plane wall and between two
parallel plates as a function of drop size and viscosity ratio [25,26].
The solutions of their work agree well with a previous study on the
motion of rigid spheres [23,24] when the drop-to-medium viscos-
ity ratio tends to infinity.

All results cited above concern viscous fluids. For micropolar
fluids, Ramkissoon [27,28] has studied the Stokes flow of a mi-
cropolar fluid past a Newtonian viscous fluid sphere and spheroid.
The two related problems of the flow of a viscous fluid past a fluid
sphere which has a micropolar fluid inside it and the flow of a mi-
cropolar fluid past a viscous fluid drop are discussed by Niefer and
Kaloni [29] with non-zero spin boundary condition. Various spin
boundary conditions have been proposed in the literature [30–33].
The resistance force exerted on a solid sphere moving with con-
stant velocity in a micropolar fluid with a nonhomogeneous
boundary condition for themicrorotation vector was calculated by
Hoffmann et al. [34]. The problem of Stokes axisymmetrical flow
of an incompressible micropolar fluid past a liquid droplet-in-cell
models has been investigated analytically by [35]. Sherief et al.
[36,37] discussed the Stokes axisymmetrical flow caused by a
sphere translating in a micropolar fluid perpendicular to a plane
wall and between two parallel plane walls at an arbitrary posi-
tion from them. Although, many authors, as mentioned above,
discussed the movement of solid spherical or non-spherical parti-
cles or droplets in micropolar fluid flow problems, the interaction
problems between particles and walls attracted the attention of
low number of authors. This motivated us to consider the present
study.

In this paper, a combined analytical-numerical solution to two
related problems involving micropolar fluids is presented. One is
of a viscous fluid sphere immersed in a micropolar fluid and mov-
ing away from an impermeable plane wall in a direction normal to
the wall. The second is the reverse context of a micropolar fluid
sphere immersed in a viscous fluid, again as the spherical drop
moves away from the wall. The underlying assumption is made
that surface tension is sufficiently strong to prevent deformation
but otherwise no account of surface tension is made. The match-
ing boundary conditions on the fluid sphere are that the velocity is
continuous, the shear stress is continuous and that the microrota-
tion proportional with vorticity. Numerical results are obtained by

evaluating the solution and applying boundary collocation meth-
ods for points on the fluid sphere. The drag force on the translating
fluid sphere is evaluated for each case. The effects of the variation
of themicropolarity and spin parameters, relative viscosities of the
droplet and the ratio of the radius of the droplet to the separa-
tion distance (the distance from the center of the fluid to the wall)
on the normalized drag force as revealed by numerical studies is
shown through figures. For the special case of the classical fluid,
our calculations show good agreementwith the available solutions
in the literature for the corresponding motion of a droplet/particle
to a plane wall.

2. Field equations

The equations governing the steady flow of an incompressible
micropolar fluid in the absence of body forces and body couples are
given by

∇ · q⃗ = 0, (2.1)

(µ+ k)∇2q⃗ + k∇ ∧ ν⃗ − ∇p = ρ (q⃗ · ∇) q⃗, (2.2)
(α + β + γ )∇∇ · ν⃗ − γ ∇ ∧ ∇ ∧ ν⃗ + k∇ ∧ q⃗ − 2k ν⃗

= ρ j (q⃗ · ∇) ν⃗, (2.3)

where q⃗, ν⃗ ρ, j and p are the velocity vector, microrotation vector,
density, microinertia and the fluid pressure at any point, respec-
tively.µ is the viscosity coefficient of the classical viscous fluid and
k is the vortex viscosity coefficient. The remaining constants α, β
and γ are gyroviscosity coefficients.

The equations for the stress tensor tij and the couple stress ten-
sormij are defined by the constitutive equations

tij = −p δij + µ (qi,j + qj,i)+ k (qj,i − ϵijm νm), (2.4)

mij = α νm,m δij + β νi,j + γ νj,i, (2.5)

where the comma denotes partial differentiation, δij and ϵijm are
the Kronecker delta and the alternating tensor, respectively.

In the limit where inertial forces are small relative to viscous
forces, the two nonlinear terms, namely the convective accelera-
tion, ρ (q⃗ ·∇) q⃗, in Eq. (2.2) and the corresponding term in Eq. (2.3),
ρ j (q⃗ · ∇) ν⃗ can be neglected. That is, let L be some characteristic
length q0, ν0 some reference value of |q⃗|, |ν⃗| respectively, then the
smaller the dimensionless parameters

N1 =
ρ L q0
µ+ k

, N2 =
ρ q20
k ν0

, N3 =
ρ j L q0

α + β + γ
,

M1 =
ρ j L q0
γ

, M2 =
ρ j ν0
k
, M3 =

ρ j q0
L k

,

(2.6)

the better will be the approximate solutions of the equations ob-
tained by neglecting the inertia terms. We note that N1 is the well-
known Reynolds number while the other represent the relative
importance of rotational viscosities to the inertia terms. Therefore,
it is reasonable to accept Eqs. (2.2) and (2.3), after dropping the in-
ertia terms, to be applicable in the case of very slowmotion. In the
following study, we consider the micropolar field equations (2.2)
and (2.3) after neglecting the inertia terms. However, some authors
consider the full versions of the micropolar field equations in their
analyses.

3. Motion of a viscous fluid sphere in amicropolar fluid normal
to a plane wall

In the present mathematical model, we consider the quasis-
teady axisymmetrical motion of a viscous fluid sphere of radius a
and viscosityµ′ translating with a constant velocityUz in a second,
immiscible micropolar fluid of viscosities (µ, k, α, β, γ ) in the
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