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A (film or) droplet of viscous liquid spreads isothermally on a smooth horizontal solid surface. The
lubrication approximation is used to study the linear stability of thin (films or) droplets, subject to
capillary, gravitational, and centrifugal forces, and a variety of contact-angle-versus-speed conditions.
All equations are derived for plane spreading films and rotationally-symmetric spreading droplets, while
the discussion of the results is carried out for the droplets. It is found that in general two types of two-
dimensional base states develop. Early on there is a simple convex contour and later a contour with a
pronounced capillary ridge near the contact line. While the convex contour remains stable, the capillary-
ridge contour becomes unstable with regard to disturbances, which are periodic in the lateral direction.
As the contact line advances in time, this instability involves a transition from two-dimensional to three-
dimensional spreading, whereas modes with increasing wave numbers become successively unstable.
The onset of the instability is controlled by gravitational, centrifugal, and capillary forces, whereas
gravitational and capillary forces tend to stabilize and centrifugal forces tend to destabilize the system. For
partially-wetting systems, the neutral stability appears to be not affected by the static advancing contact
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angle, though the growth rates are modified.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The spreading of liquids on solids under various conditions has
been investigated in literature to a reasonable extent. Extensive
reviews have been presented by de Gennes [1], or more recently, by
Bonn et al. [2]. One important aspect is the physics of the dynamic
contact line. The characteristics of such dynamic contact lines and
their treatment within the frame of continuum mechanics have
been discussed in detail by Dussan V. [3]. In the cited reviews,
a further aspect, namely the effect of auxiliary forces onto the
spreading liquid, plays a minor role. Even though gravitational
forces are addressed to some extent, centrifugal forces due to
a rotating substrate are rarely within the focus of attention.
However, it is the effect of centrifugal forces which relates a
spreading liquid layer to the early stage of spin coating, during
which the contact line moves to the edge of the substrate. The spin-
coating process is widely engaged in industry to coat advanced
electronic or optical devices with solid layers, which are achieved
via liquid spreading and subsequent solvent evaporation (cf. Larson
and Rehg [4] for a review). Finally, the issue of the stability of
an advancing liquid front on a solid is not yet fully resolved.
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Experiments sketched below in detail indicate that for driven
contact lines a fingering instability may occur. Hereby, the driving
of the contact line may be due to the wall-tangential components
of auxiliary forces. Prominent examples are gravitational forces
during liquid spreading down an inclined plate, centrifugal forces
during liquid spreading on a rotating plate, or air-jet blowing
during liquid spreading on horizontal plates. The analogy of these
three methods of external driving has been pointed out e.g. by
Troian et al. [5] or Moriarty et al. [6]. Further, most examples have
in common that the spreading liquid flow usually is characterized
by a small Reynolds number, such that the Stokes equations may
be used as the basis for a theoretical treatment (cf. Goodwin and
Homsy [7]).

An early theoretical investigation into a liquid layer on a
rotating solid plate has been conducted by Emslie et al. [8]. For his
treatment he assumes that a thin Newtonian liquid layer exists on
the rotating plate, which is rotationally-symmetric. Without the
need to deal with a (moving) contact line, his evolution equation
involves simply a balance of viscous and centrifugal forces. He finds
that initially uniform liquid layers remain uniform in the presence
of the rotation, and that initially non-uniform liquid layers tend
towards uniformity due to the rotation. Davis [9] is one of the first
authors who concentrates on the stability of moving contact lines.
For the specific case of a so-called rivulet, i.e. a narrow stream of
liquid on a solid, he poses three different conditions for the contact-
line dynamics on both sides of the rivulet, namely a fixed contact
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line, a moving contact line with fixed contact angle, and a moving
contact line with a smoothly varying contact angle. Engaging an
energy method, he arrives at a damped linear harmonic-oscillator
equation and derives stability conditions for all three contact-line
conditions. He concludes that for base states with dynamic contact
lines, the energy method appears to be inappropriate.

Huppert [10] presents experimental results for the spreading
of a viscous current down an inclined plate. In particular, he finds
a fingering instability of the contact line and derives an expres-
sion for the wavelength of the disturbances, which appears to
be independent of both viscosity and contact-line characteristics.
Schwartz [11] infers numerical solutions to an evolution equation,
valid for the viscous flow down an inclined plate with both grav-
ity and surface tension acting. Invoking the lubrication approxima-
tion, he finds for a contact angle of zero, i.e. for perfect wetting,
interfaces which feature the formation of fingers. Troian et al. [5]
employ a two-zone model, with an outer zone of constant lig-
uid thickness and an inner capillary zone near the moving con-
tact line, in conjunction with the lubrication approximation. From
a linear stability analysis, they conclude that thin films with small
contact angles, driven by external body forces, can be unstable to
periodic disturbances and, hence, to the formation of fingers. Like-
wise based on a two-zone model, Moriarty et al. [6] construct a
matched-asymptotic solution for a thin liquid film draining down a
vertical wall. These authors further extend their theoretical inves-
tigations towards the spinning film on a rotating horizontal sub-
strate and towards the blowing of an air jet onto a spreading film.
In all cases they find time-dependent interface profiles, which de-
velop a steep capillary ridge near the front. The stability question
is not addressed by these authors. Bertozzi and Brenner [12], also
on the basis of a two-zone model, revisit the stability of the vis-
cous current on an inclined plate, as first discussed by Huppert [ 10].
In addition to the (driving) wall-tangential contribution of gravity,
they account for the wall-normal contribution and infer that below
a critical inclination angle the base state appears to be linearly sta-
ble. Further, from numerical simulations, they establish that there
is significant growth of microscopic-scale perturbations at the con-
tact line on a transient time scale.

An early experimental confirmation of the finger formation at
droplets, spreading on rotating substrates, is presented by Melo
et al. [13]. These authors capture the evolution of the droplet
footprint in time and find, at first, axis-symmetric spreading, fol-
lowed by the formation of a capillary ridge near the contact line,
and finally, the appearance and growth of disturbances, which are
periodic in the circumferential direction. Further, a comparison
with a two-zone model is presented, featuring reasonably-good
agreement. In two articles, Fraysse and Homsy [14] and Spaid and
Homsy [15] address experimentally the spreading and the insta-
bility of Newtonian and non-Newtonian liquids on rotating sub-
strates. By registering translucent light with a CCD camera from
above, the authors capture the contact line and, from absorption
due to a dye, infer droplet profiles, both as a function of time. The
authors report that the most unstable wavelength appears to be
independent of both the droplet size and the rotation speed, how-
ever, it depends on the wetting characteristics. Further, no sig-
nificant difference has been found between a (non-Newtonian)
Boger fluid and its (Newtonian) solvent. This is attributed to the
small Weissenberg number within these experiments. For larger
Weissenberg numbers, though, the non-Newtonian fluid causes a
delay of the instability and a reduced growth rate of the distur-
bances if compared to its (Newtonian) solvent. Moreover, Spaid
and Homsy [16] extend the stability analysis of Troian et al. [5]
to non-Newtonian fluids. In detail they analyze the stability of a
straight capillary ridge based on a two-zone model with either a
precursor film or slip at the front. They sketch the mechanism of
this instability, namely that thick regions of the capillary ridge are

more affected by the volumetric force and less affected by the wall
presence. Hence, these regions advance faster and the flow is redi-
rected into these fingers. They further find that the instability is
little affected by the details of the contact-line model and the con-
tact angle. However, the viscoelastic stabilization from the exper-
iments is confirmed by their stability analysis.

McKinley et al. [17] theoretically investigate the spreading
of an incompressible Newtonian liquid droplet attached to a
horizontal plate and subject to air-jet blowing. They rely on the
conservation equations in the lubrication limit, model the dynamic
contact line by means of the generalized law of Tanner, and
invoke the limit of small capillary numbers to infer an evolution
equation and quasi-steady solutions to the problem. They discuss
spreading droplets without gravity, and with gravity for sessile
and pendant droplets, all for a partially-wetting system. They
find simple convex or concave droplets, and droplets which
develop a capillary ridge near the front, or even open in the
centre to form an annular ring of liquid. Further, they analyze
the stability of equilibrium solutions with regard to small axis-
symmetric disturbances and find, independent of gravity, that the
non-annular equilibrium droplets remain stable. However, annular
droplets without gravity appear to be unstable. McKinley and
Wilson [18] extend this stability analysis to non-axis-symmetric
disturbances and to finite capillary numbers. For neglected gravity,
they find all equilibrium solutions to be unstable, both for the
quasi-steady limit of vanishing capillary numbers and for finite
capillary numbers. This result holds for non-annular and annular
droplets. Wilson et al. [19] engage a similar framework to consider
the axis-symmetric spreading of droplets on top of a rotating
substrate. They infer analytical solutions for vanishing and small
surface tension, and numerical solutions for finite surface tension,
while gravity is neglected. Their solutions for finite surface tension
recover the development of a capillary ridge near the moving
contact line and prove to be in agreement with the experimental
findings of Fraysse and Homsy [14] and Spaid and Homsy [15],
obtained for Newtonian fluids prior to the onset of the fingering
instability. The stability question is not addressed. Schwartz and
Roy [20], based on numerical solutions of the evolution equation,
lubrication approximation, and (long-range) molecular forces,
focus on the spreading of a partially-wetting viscous liquid on a
rotating substrate. By means of an energy method, the stability of
axis-symmetric equilibrium solutions is in particular addressed.
They find all equilibrium solutions to be unstable with respect
to the off-centre displacement mode, while higher modes remain
stable until the rotation speed exceeds some critical value. Further,
the authors report that a comparison with the experimental results
of Fraysse and Homsy [ 14] for the Newtonian solvent appears to be
favourable.

In more recent experiments, Holloway et al. [21] study the
spreading of silicone oil droplets on rotating substrates. The
authors engage shadowgraphy to capture the footprint of the
droplets in time and derive spreading laws for axis-symmetric
spreading prior to the onset of the instability. Further, growth
rates for various modes of the fingering instability are presented.
The authors report that the number of fingers increases with
both the rotation speed and the drop volume. Chou et al. [22]
investigate the spreading of various silicone oils on a rotating
silicon wafer by means of two CCD cameras, directed from the
top and the side onto the droplet. From these images they infer
the droplet radius and estimate the (dynamic) contact angle. The
authors report a crucial influence of the dynamic contact angle
onto the fingering instability and find contact angles of up to 150°,
depending on the rotation speed. Further, the critical radius for
the onset of the fingering instability is found to be a function of
a modified rotational Bond number. Finally, Mukhopadhyay and
Behringer [23] engage an interferometric technique to capture
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