Accepted Manuscript

Title: Characterization of supported Cu-Zn/graphene aerogel catalyst for direct CO₂ hydrogenation to methanol: Effect of hydrothermal temperature on graphene aerogel synthesis

Authors: Varisara Deerattrakul, Pralachoak Puengampholsrisook, Wanwisa Limphirat, Paisan Kongkachuichay

PII: S0920-5861(17)30829-5

DOI: https://doi.org/10.1016/j.cattod.2017.12.010

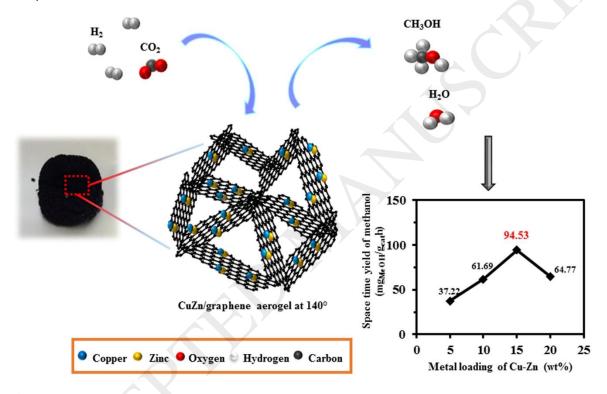

Reference: CATTOD 11162

To appear in: Catalysis Today

Received date: 1-10-2017 Revised date: 30-11-2017 Accepted date: 6-12-2017

Please cite this article as: Varisara Deerattrakul, Pralachoak Puengampholsrisook, Wanwisa Limphirat, Paisan Kongkachuichay, Characterization of supported Cu-Zn/graphene aerogel catalyst for direct CO2 hydrogenation to methanol: Effect of hydrothermal temperature on graphene aerogel synthesis, Catalysis Today https://doi.org/10.1016/j.cattod.2017.12.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

Characterization of supported Cu-Zn/graphene aerogel catalyst for direct CO₂ hydrogenation to methanol: Effect of hydrothermal temperature on graphene aerogel synthesis

Varisara Deerattrakul¹, Pralachoak Puengampholsrisook¹, Wanwisa Limphirat², Paisan Kongkachuichay^{1*}

Graphical Abstract

Abstract

Reduced graphene oxide aerogel (rGOae) was synthesized via hydrothermal reduction and following freeze-drying method. The as-prepared material was then used as a novel support of Cu-Zn/rGOae catalyst for the direct CO₂ hydrogenation to methanol. Moreover, *in situ* X-ray

1

¹ Department of Chemical Engineering, Faculty of Engineering, NANOTEC Center for Nanoscale Materials Design for Green Nanotechnology and Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

² Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand

^{*} Corresponding author (paisan.k@ku.ac.th)

Download English Version:

https://daneshyari.com/en/article/6504113

Download Persian Version:

https://daneshyari.com/article/6504113

<u>Daneshyari.com</u>